OREILLY

HOW T0 THINK LIXE A COMPUTER SCIENTIST

Allen B. Downey

Think Python 2e #3ZhR

B $%

e

Think Python

Chapter 0 Preface RIS

Chapter 1 The way of the program 122 &

Chapter 2 Variables, expressions and statements T =, &&=, &8
Chapter 3 Functions B

Chapter 4 Case study: interface design =612 5 : X Hi% it
Chapter 5 Conditionals and recursion {418 %

Chapter 6 Fruitful functions 1% 0] & BUER X

Chapter 7 lteration 1%

Chapter 8 Strings F#&F &

Chapter 9 Case study: word play =422 5] : 2353 =,
Chapter 10 Lists 53

Chapter 11 Dictionaries = &

Chapter 12 Tuples JT4

Chapter 13 Case study: data structure selection 1% 5 : #IEZ HHI% 12

Chapter 14 Files X4

Chapter 15 Classes and objects 3 FIxt §
Chapter 16 Classes and functions % F1E#{
Chapter 17 Classes and methods % #74%
Chapter 18 Inheritance % Z&

Chapter 19 The Goodies %%+ #h 7T

© 0o N o o b~ W N

N N A A A A A a a @A =
-~ O © 0O N oo o o W N =~ O

R+ EVRIER — ¥ EBZEpython F R

YE#& : Allen B. Downey
3% : cycleuser
3B @ ThinkPython-en-cn

#i : CC BY-NC 3.0

http://greenteapress.com/wp/think-python/
https://github.com/cycleuser
https://github.com/cycleuser/ThinkPython-en-cn
http://creativecommons.org/licenses/by-nc/3.0/

Think Python

2nd Edition
by Allen B. Downey
Bix K&

This is a very classical book for newbies of programing. There are some versions of
translation. But | still think that we can do it by ourselves.

XE—AR2HBHREAN$FE, MEEBL—L83, fTadHErEFanNzEzEEE—T
Ltz oF |

This is the second edition of Think Python. It uses Python 3, with notes on differences in
Python 2. If you are using Python 2, you might want to use the first edition.

X2 Think PythoniX A BB TR, ARFEABIZPython3, S5Python2 5 RZ AR, X
LERE 2B 7T, NRIFAPYython2fI %, & 2 URE 1 iz E—DhRA,

Buy the first edition at Amazon.com
B g A H
Download Think Python 2e in PDF.
T # Think Python 2e PDFA& =B &, F hiR.
Read Think Python 2e in HTML.
FE £ 3% Think Python 2e HTMLIM 7 ik A (HEFZ S, #EXFHEN, BHAE) .

Example programs and solutions to some problems are here (links to specific examples are
in the book).

HBC LU E M) 21 BOARR] AR ix B (B A AR A 72 5 Pl B).

Description 3. BH
Think Python is an introduction to Python programming for beginners.

Think Python X & $ 2 E R)& 17 4 Python 12,

It starts with basic concepts of programming, and is carefully designed to define all terms
when they are first used and to develop each new concept in a logical progression.

http://www.greenteapress.com/thinkpython/index.html
http://www.greenteapress.com/thinkpython/index.html
http://amzn.to/Owtmjy
http://amzn.to/Owtmjy
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf
http://www.greenteapress.com/thinkpython2/html/index.html
http://www.greenteapress.com/thinkpython2/html/index.html
http://www.greenteapress.com/thinkpython2/code
http://www.greenteapress.com/thinkpython2/code

NN —LERHRENERRS, LHBSHARR, ABRERFH AR BRI

D I
H

G

[e]

Larger pieces, like recursion and object-oriented programming are divided into a sequence
of smaller steps and introduced over the course of several chapters.

B 0984, s pLARER A RER, ZLEHIRN—DDNR, USPEFTHAR
*ﬁ é\fjjo

What's new in the second edition?

B HRA 5 HT K FEIE 7

e We've upgraded to Python 3: All examples in the book are now Python 3, and the
supporting code has been updated to run in both Python 2 and 3.

FiaAPython3T : + BEFTA A£G &EAPython3k 2 3, SERSLEMT Fra, B
Python2s%#& 3R 8L iz 1T

e We've removed the roadblocks: Based on reader feedback, we know where people had
problems, so we've fixed or removed the pain points.

EETEEEENRE ETERSE, BIOARIAREFEXERE, PTLURLAZE
HEERERET —Ef R,

e Python in the browser: For beginners, one of the challenges of getting started is
installing Python. For readers who don't want to install Python right away, we provide
instructions for running Python in a browser using PythonAnywhere, a free online
programming environment.

x| i 2R EEPYthonz 2 7 : FIFEBEIMNE—TEAME R EPython, »HAEMLEH
BEARE L BEEM R EPython, FFARM T — /N A x| i 283K = 1TPythonBI 5 N - A
PythonAnywhere, —N % % E@T%&Python%ﬁ%iﬁo (2EX : PEA 2 LUE BRI
fenby.com, BB X LB =R, THEAMNNE,)

e More Python goodies: We've added a chapter to cover some powerful Python features
that didn't make it into the first edition, including list comprehensions and additional data
structures.

FLPythonP & : $MINT —%, RN B—Led—IRAEIRRMPythonThAE, N3l
AR R N RR L5 4

Think Python 2e is a Free Book.

BARHZ—ARB-M%-BHHH,

It is available under the Creative Commons Attribution-NonCommercial 3.0 Unported
License, which means that you are free to copy, distribute, and modify it, as long as you
attribute the work and don't use it for commercial purposes.

FHEREFHAZR-IEE L EER-FZR N, XBWRERTLLE-F%-H i S 6.
o Mg, REMEMAM, FETHTELEN, BALL

If you have comments, corrections or suggestions, please send me email at
feedback{at}thinkpython{dot}com.

MRRB—Lirie., BEXEEN, TLLL b feedback@thinkpython.com
Other Free Books by Allen Downey are available from Green Tea Press.

HAth# Allen Downey 4 58 B-#:%-H + F2EB 7 LATEGreen Tea Pressik El.

Download T

e Precompiled copies of the book are available in PDF.

% i3 FRIPDFARATERX BT % : PDF,

e The LaTeX source code is available from this GitHub repository.
LaTeXfX s 1EGitHubix BRI LLF # : this GitHub repository.

e Here is the HTML version, and here is the HTML code in a zip archive.

P 7 7E 4 5 iz HTML version, X £/ 73T & F 8 HTML code , X2 — P zipt& B 45

E”_T

o

Earlier Versions

BHARRA
The first edition is here.
—hR7EXE

A previous edition of this book was published by Cambridge University press with the title
Python for Software Design. This edition is available from Amazon.com.

RAEWE—NRAZHESHFARFHRAEHE IR, #5872 Python for Software Design. A
D v 5 a2k % BS,

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://greenteapress.com/
http://greenteapress.com/
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf
https://github.com/AllenDowney/ThinkPython2
https://github.com/AllenDowney/ThinkPython2
http://www.greenteapress.com/thinkpython
http://www.greenteapress.com/thinkpython

The original Python version of the book was published by Green Tea Press with the title How
to Think Like a Computer Scientist: Learning with Python. This edition is available from from
Lulu.com.

N+ HRIBIRA B Green Tea Press iRk, ###% % How to Think Like a Computer
Scientist: Learning with Python. iX MR AR LAM X W53 E] Lulu.com.

Other Free Books by Allen Downey are available from Green Tea Press.

HA R Allen Downey 458 B-F3%-H # 2287 LI{EGreen Tea Pressik Zl.

Chapter 0 Preface §i 5

The strange history of this book

RHBEFL LR

In January 1999 | was preparing to teach an introductory programming class in Java. | had
taught it three times and | was getting frustrated. The failure rate in the class was too high
and, even for students who succeeded, the overall level of achievement was too low.

TE1999F 1 Bt EIE, FIEELZE—1JavaBI A HTER. BRYNBL2EE=RT,
SRR, M EERKENS, HEEMFEIRLZERNZAE BRENERKEHT)
&,

One of the problems | saw was the books. They were too big, with too much unnecessary
detail about Java, and not enough high-level guidance about how to program. And they all
suffered from the trap door effect: they would start out easy, proceed gradually, and then
somewhere around Chapter 5 the bottom would fall out. The students would get too much
new material, too fast, and | would spend the rest of the semester picking up the pieces.

L BRE P, HETXLANUEEM ., BEHMER 5 KERL, BREXTJavaly
my, FHEXHAIEE, MEABRERSNRTNARENSERIES (FEX
MERZ BIEMEE S, RESRFERENDE) . IEEMEE—L MfEp X
I FERMMEANER G 2, REFRSRA, BEERREENMTS, HNBLRE, H
RRARE #HfEm. PENBRA-TFRAARSHAA, EEEFTR, MBFELY
FRRLBTE R BT EF N 2HR— R RS 2EMN L.

Two weeks before the first day of classes, | decided to write my own book. My goals were:
FREAEZR, BELARAEEETEHCHHER B, B0 :
e Keep it short. It is better for students to read 10 pages than not read 50 pages.
M. EFEE10T A9 L4150 T MR IFEZ,
e Be careful with vocabulary. | tried to minimize jargon and define each term at first use.

P& C . BREBEAZHAERIIRE, FEEERERNHEE—DEHITE
>‘LO

e Build gradually. To avoid trap doors, | took the most difficult topics and split them into a
series of small steps.

B, % TR Thap M ud , L NBRERNE XNBIHBER—T1T %
M, FEIMBDDRNAENERD, —FFR#1T,

e Focus on programming, not the programming language. | included the minimum useful
subset of Java and left out the rest.

HFF TR, MARHIEEZS. BRREE T XxFlavalim/NIERNS, RELSKRESH
Wi,

| needed a title, so on a whim | chose How to Think Like a Computer Scientist.
BEFBEMe, RRLFE, &7 Ty MiAGR+ENREZER—#8ZE] .

My first version was rough, but it worked. Students did the reading, and they understood
enough that | could spend class time on the hard topics, the interesting topics and (most
important) letting the students practice.

HHB—RBEAMRAERE, BERERA. FEERFEH#E, FHEMR T IER LFTH#BIARLE
RMAEBN L, REENE, s iEk sk,

| released the book under the GNU Free Documentation License, which allows users to
copy, modify, and distribute the book.

ZEBMUGNUEBHXEHNRL T T IR, X—ARFEAEEH. BRUKk
PERERSE,

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia, adopted
my book and translated it into Python. He sent me a copy of his translation, and | had the
unusual experience of learning Python by reading my own book. As Green Tea Press, |
published the first Python version in 2001.

ETRMWEBREBT. JeffElkner, £FRB TM—HMIEPHER, MMBRMEHEIAL, B
XA MJavaBllix B 7 PythonfahliAs, fitk e F—1n Ti3fel , AEFHRFET W T8

o] EFE 5 PythonfIEF W2 5, FRIE2001F, FiEitGreen Tea PresstiiR T A&

+ B — P PythonhR A,

In 2003 | started teaching at Olin College and | got to teach Python for the first time. The
contrast with Java was striking. Students struggled less, learned more, worked on more
interesting projects, and generally had a lot more fun.

£2003%F, FHMIFBWAERMBEFRHT, FEBRFHEHPythonT ., XFJavalysttbiR
B, 2ENENZT, FERESZT, EEBENRE LhESH, BEEh LA iEx—
F 5] ERE 5,

Since then I've continued to develop the book, correcting errors, improving some of the
examples and adding material, especially exercises.

MBI, Fimhaks: g ip XA $H, |

SIE4432, a0, MEn & BHA K 4 5] H.

The result is this book, now with the less grandiose title Think Python. Some of the changes
are:

¢ | added a section about debugging at the end of each chapter. These sections present
general techniques for finding and avoiding bugs, and warnings about Python pitfalls.

| added more exercises, ranging from short tests of understanding to a few substantial
projects. Most exercises include a link to my solution.

| added a series of case studies—longer examples with exercises, solutions, and
discussion.

| expanded the discussion of program development plans and basic design patterns.

| added appendices about debugging and analysis of algorithms.
SRMAETAEZIRY, AEFA L TIREZ——Think Python, EEMR LT :

o EE—ERRE, FINTXTdebughiilism, XLERFTRMT X T debughy—LE(F
SREg, HbananMEEcEIFE bug, E AW E X TPython—LEfam #1T T 1B,

e WMTEZMA Y, Mg 2BEREAEANR, F—Eh&FTEMNABE. AZHA
S EBRR AR RN,

o HMANMT —EROIFR, 2243, BRARMTLERARRIREA.
o tAFEYy BT XRTEFF £ MINFER L HERXETITiE,
* XTdebugfE LD, ZEHMAMT —LMH %,

The second edition of Think Python has these new features:

¢ The book and all supporting code have been updated to Python 3.

¢ | added a few sections, and more details on the web, to help beginners get started
running Python in a browser, so you don’t have to deal with installing Python until you
want to.

e For Chapter 4.1 | switched from my own turtle graphics package, called Swampy, to a
more standard Python module, turtle, which is easier to install and more powerful.

¢ | added a new chapter called “The Goodies”, which introduces some additional Python
features that are not strictly necessary, but sometimes handy.

X AThink Python BJ5E Z kRGN FHIFTAA :
o K+ NMFIESE R SEFH % EIPython3 T,

o BT —EWOAR, UR—EXTFweb A EMNW T, X2 THRMWEERSE
A AR FFIA 2 X Python, X # BIE R AR L Pythontl % 7 21 7

o EFRWUEMF—F, HBHECH—NRFUHASWampyI/N G & B B4 402 T
— D E i ERPythont® e, &ZFMMSturtle, BIFRE, EERLLZATREKRT,

o WMIEARMTHMN—ZF, Wk NEEL , N7 —LPythonBENINEE, =MK%,
ite

FEPEATEL LY, BERNIEEFAN,

| hope you enjoy working with this book, and that it helps you learn to program and think like
a computer scientist, at least a little bit.

BRAEAREZERFIZEFHNiLE, EHFEIFBEBIARE I RIE, FHILRR
FRIEHENMER—#EE, HHE—KRRBF,

Allen B. Downey
X B
Olin College

B
Acknowledgments

B4t

Many thanks to Jeff Elkner, who translated my Java book into Python, which got this project
started and introduced me to what has turned out to be my favorite language.

FEE RXstdeff Elkner, BB Javaitt#:2K T Python, F5I&E T x—5 B
A, FEMBIBPythonizENBLHE, CE2RBREXRN4AEES T,

Thanks also to Chris Meyers, who contributed several sections to How to Think Like a
Computer Scientist.

Z &34 Chris Meyers, fhst MR+ ENBRER—HERBE] H—EE5H q@k.

Thanks to the Free Software Foundation for developing the GNU Free Documentation
License, which helped make my collaboration with Jeff and Chris possible, and Creative
Commons for the license | am using now.

RogtBRHEER, iRt TOGNUBBXEN, EX—BIEET, FFlJeff
LAKChrisBIS R % T B 8E, HARERHBAEMANRHEZHiL

Thanks to the editors at Lulu who worked on How to Think Like a Computer Scientist.
RostLuluBY s 4347, MATHERT MG+ BENMRIZER—#BED .

Thanks to the editors at O’Reilly Media who worked on Think Python.
Rt O'Reilly 2 BB 454841, 41k T XA [Think Pythond .

Thanks to all the students who worked with earlier versions of this book and all the
contributors (listed below) who sent in corrections and suggestions.

REXERGATA St A S BHRAME ¢ wilEZE1, UREMSSREHREE
NEIAER M (BUIREATF)

Contributor List

EIIES

More than 100 sharp-eyed and thoughtful readers have sent in suggestions and corrections
over the past few years. Their contributions, and enthusiasm for this project, have been a
huge help.

BRUELEES N B RN ERELENIEFE LR TEMENTIZL AT &
Makiz, 4] 7 BRFNRIEER 2t A BB RF B,
If you have a suggestion or correction, please send email tofeedback@thinkpython2.com. If

| make a change based on your feedback, | will add you to the contributor list (unless you
ask to be omitted).

MBAREGEAEREN, # 4 a4 Plfeedback@thinkpython2.comat 2Hi i1, INRE
FRgMHE TENR, BSFERMEBToFR (HREAEERINBET)

If you include at least part of the sentence the error appears in, that makes it easy for me to
search. Page and section numbers are fine, too, but not quite as easy to work with. Thanks!

HEMEZVIEHEAFH—MORMALEK, ZWILIDNEEZERR. TBNETHS
WAL, BRXEZH. Zu7T |

GEE : LT amoRA 8% T)

Chapter 1 The way of the program %22 I&

The goal of this book is to teach you to think like a computer scientist. This way of thinking
combines some of the best features of mathematics, engineering, and natural science. Like
mathematicians, computer scientists use formal languages to denote ideas (specifically
computations). Like engineers, they design things, assembling components into systems
and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of
complex systems, form hypotheses, and test predictions.

APHENZUWMIZRBTENMMZR—#REE, sMBEANCRTHE., ITEAN
BARZRE R, +ENRZEREEER—#, FAEHEEXRERER (CHZ—
B8 BRIBR—Hi&it. 8%%4%, FEAEZELRPIHE®KE ; REARE
R—ENRE 2 R4MTAHENX, BiFRE, nxXxmEnNgR,

The single most important skill for a computer scientist is problem solving. Problem solving
means the ability to formulate problems, think creatively about solutions, and express a
solution clearly and accurately. As it turns out, the process of learning to program is an
excellent opportunity to practice problem-solving skills. That’'s why this chapter is called,
“The way of the program”.

HENBZRE—SEBRFZERE TBR M) . BRFERREERENDL A&
1THRE, aEMkhE EFEREE, FEBMWEHARX HFBRAR, MFE I HEN
itig, ER—MEFIMARP)EENNLENR. ABRNHRER TREZEI , RE
FATELL.

On one level, you will be learning to program, a useful skill by itself. On another level, you
will use programming as a means to an end. As we go along, that end will become clearer.

E—ERZEL, ARFBIHBAFRZIHEZ—EBZNRG, A4 —L2EL,
ARBFBRHEZEF Y R —MENNRE, X—BNIBEERNEHFE I MELFTE.

1.1 What is a program? ZFEt4 7

A program is a sequence of instructions that specifies how to perform a computation. The
computation might be something mathematical, such as solving a system of equations or
finding the roots of a polynomial, but it can also be a symbolic computation, such as
searching and replacing text in a document or something graphical, like processing an
image or playing a video.

BFE—THESNFS, RERSUA#IT-AzE, sMzBHARRFLHN, L
KRB —EFAHBEKRZAANNR ; SRBALURHS2E, AP ERNE S
X7, HE-LEERbEE, HNKERRIEBR—EBRMNTR.

The details look different in different languages, but a few basic instructions appear in just
about every language:

input: Get data from the keyboard, a file, the network, or some other device.

e output: Display data on the screen, save it in a file, send it over the network, etc.
e math: Perform basic mathematical operations like addition and multiplication.

e conditional execution: Check for certain conditions and run the appropriate code.
e repetition: Perform some action repeatedly, usually with some variation.

AR%IZEESNEKE S BEEA—#, BLEHEAEESHaE—LEaiEs
o MARG : MEtE. TH. F%sE R 4 Lk SR,

o HHRG BREERET LR, REFIMD, B %8 EEE,

o Bz B TEANESRE, LOMESERE

o XMYIMT : REBERMESHEFREITHEIN D,

i
o ERYIM : EEHTLEERF BERBEELIL.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no
matter how complicated, is made up of instructions that look pretty much like these. So you
can think of programming as the process of breaking a large, complex task into smaller and
smaller subtasks until the subtasks are simple enough to be performed with one of these
basic instructions.

ARTERARBE, HOABTMX L%, MAINMAERERF, EHELE%, HEH—
ExHNESTASMAN. FHEARTLUEHZENREBN—NMEEKRE 2 E5#1T
FORBRN IR, PEIEEAEALROERESTRERA L,

1.2 Running Python iz 1TPython

One of the challenges of getting started with Python is that you might have to install Python
and related software on your computer. If you are familiar with your operating system, and
especially if you are comfortable with the command-line interface, you will have no trouble
installing Python. But for beginners, it can be painful to learn about system administration
and programming at the same time.

HF R FEARPython By s EE BRI 5t &2 — R 2 00 47 7E &, i £ & B Python#14E K By — L8
B, MRMMAERFERE, FEZRIBAMTITRE, BRERPythont{R¥E %
ST . B)FERN, BREMNEABRTRRAATENEZ %R, MUREEER
X&TO

To avoid that problem, | recommend that you start out running Python in a browser. Later,
when you are comfortable with Python, I'll make suggestions for installing Python on your
computer.

A TR, BEFEARRDTLUIEFF AR e %) % 283k A2 Python, BET Z
&, B&REPythonZli+ &ML,

There are a number of web pages you can use to run Python. If you already have a favorite,
go ahead and use it. Otherwise | recommend PythonAnywhere. | provide detailed
instructions for getting started athttp:/tinyurl.com/thinkpython2e.

B RZ M RIBMHIE X5 TPythoniINEE, MRMELAIHBEE—EL% T, ATk
RER M, BHEFZFART LUK X PythonAnywhere, xtItbB9ME A 42 0 LATE FEA 44
Elhttp://tinyurl.com/thinkpython2e.

There are two versions of Python, called Python 2 and Python 3. They are very similar, so if
you learn one, it is easy to switch to the other. In fact, there are only a few differences you
will encounter as a beginner. This book is written for Python 3, but | include some notes
about Python 2.

PythonsliE8 & PN EEM D, BIPython2#IPython3, MIRRZi HAPK—1, e %
A EREAEGE, ME#RERBRE R, srr bt TFHEERR, BNRBEREM
MEHNME. XA APython3EH), {BthastPython2# {731,

The Python interpreter is a program that reads and executes Python code. Depending on
your environment, you might start the interpreter by clicking on an icon, or by typing python
on a command line. When it starts, you should see output like this:

PythonBVfZ#2 28 @ — 1 iz X FH #ITPythonfX 22 F., IRIBIRIZRLFIE, RATl=RE
A B E B ITH# ApythonsRiz 1THEZ 2R, BRITER, BRI X HBMG
H o

Python 3.4.0 (default, Jun 19 2015, 14:20:21)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

>>>

The first three lines contain information about the interpreter and the operating system it's
running on, so it might be different for you. But you should check that the version number,
which is 3.4.0 in this example, begins with 3, which indicates that you are running Python 3.

http://tinyurl.com/thinkpython2e
http://tinyurl.com/thinkpython2e。

If it begins with 2, you are running (you guessed it) Python 2.

FRM=1TE T R TFEAHRNMERERENER, FIUARZSENERABEEFMAR
B, it Y{R# 5 RAME, tLINFlFHrE3.4.0, FAE3F LM, BERIRT, ft
iz {THIZPython3, fREEWMEEREI, WRFF LHE2H8F EPython2ig,

The last line is a prompt that indicates that the interpreter is ready for you to enter code. If
you type a line of code and hit Enter, the interpreter displays the result:

EE—TRPMRRTH, SHREaREarms T, MRAMGARST, MRMRHA—
TRBRELE 4, BREMIETRERT, WHAHAR:

>>> 1 + 1
>>> 1 + 1

Now you’re ready to get started. From here on, | assume that you know how to start the
Python interpreter and run code.

RAEARD 2 P FFI55 5) PythonBOAE 4 T SLIEBAE IR 1 3% B2 BB 43K & 5
Pythonf# £ 227011z {TPythont 53 T,

1.3 The first program E— 1N 2%

Traditionally, the first program you write in a new language is called “Hello, World!” because
all it does is display the words “Hello, World!”. In Python, it looks like this:

#HBELLE, ARRF—FHIEZSEENE—NIEFEHWUE I'Hello, World ! 1,
HAxBE— PN EF AR E mixNiF A THello, World ! I . #EPython/l, 2iX# £,
B :

>>> print('Hello, World!"')
>>> print('Hello, World!"')

This is an example of a print statement, although it doesn’t’'t actually print anything on paper.
It displays a result on the screen. In this case, the result is the words Hello, World! The
quotation marks in the program mark the beginning and end of the text to be displayed; they
don’t appear in the result.

X MTHZANGIF, 2AFEEFRK E@m#TREH MTEHL . IMEFIES
RETERSLE, &#RUBMHET X194 THello, World ! J

The parentheses indicate that print is a function. We’'ll get to functions in Chapter 3.

BESREATprintE—TEHE. RTERHEXNIL=ZEF/ T4

In Python 2, the print statement is slightly different; it is not a function, so it doesn’t use
parentheses.

>>> print 'Hello, World!'
>>> print 'Hello, World!'

This distinction will make more sense soon, but that's enough to get started. XX | LAfG &
HEEERAN, AEHZ RS T,

1.4 Arithmetic operators iz EF

After “Hello, World”, the next step is arithmetic. Python provides operators, which are special
symbols that represent computations like addition and multiplication.

£ THello, World ! 1 /&, T—3mMEEE T, Pythoni2t T 28R, Ml2— LM%
FRBIINIE. REFEENFTST,

The operators +, -, and * perform addition, subtraction, and multiplication, as in the following
examples:

Z B+, -MIPRERINE. AGEMFE, MTFRR :

>>> +
>>> +

>>>
>>>

>>>
>>>

The operator / performs division:

iz BERERIL/ERERE

>>> /
>>> /

You might wonder why the result is 42.0 instead of 42. I'll explain in the next section.
fRIGHTENA 9 A s B RE42.0MAR42, BN T—EH RBEE.

Finally, the operator ** performs exponentiation; that is, it raises a number to a power:

&E, B PMEa8/F™, BRTEA, MEfl—TMHEAER, BE—TMEAERRFE
=

>>> 6**2 + 6
>>> 6**2 + 6
42

In some other languages, # is used for exponentiation, but in Python it is a bitwise operator
called XOR. If you are not familiar with bitwise operators, the result will surprise you:

EEMHIN—EREZZEPR, "BTRSERAHER, BEPythond X Z—Miiz FiEF
FFHE TRy . BRARTABM 2 BRFF, SR—ELRRRF

>>> 6 A
>>> 6 A

| won’t cover bitwise operators in this book, but you can read about them at Wiki. FEA 4
FeFREEE, BRTUETER MEBEEREE— TR TH# : Wik

1.5 Values and types & #1 3 &Y

A value is one of the basic things a program works with, like a letter or a number. Some
values we have seen so far are 2, 42.0, and 'Hello, World!'.

BRI REFRENEANRe—, LII— 1 FE8W, HEHF. RNBRNERT—
e BB F T, tban2, 42.0, 2 EBRNFERSE MHello, World ! 1

These values belong to different types: 2 is an integer, 42.0 is a floating-point number, and
'Hello, World!" is a string, so-called because the letters it contains are strung together.

XEEBFRAEAN LR 22— PMEF#E, 42.02F =8, [Hello, World | | B2F&F&
1%, ZFTLAUFRHEREBR AT —BFR. (GFEF IRPNEEBE DT RE 3
BE— TR, SHEEEYPRER L ZEBEREEMTLAHR, MURRARXERSRK
FhmiEestEmELEET.)

If you are not sure what type a value has, the interpreter can tell you:

MRARTDBE — MR 2 £ BB, IRAETLLEARARIERE FIR

http://wiki.python.org/moin/BitwiseOperators
http://wiki.python.org/moin/BitwiseOperators

>>> type(2)

>>> type(2)

<class 'int'>

>>> type(42.0)

>>> type(42.0)

<class 'float'>

>>> type('Hello, World!')
>>> type('Hello, World!')
<class 'str'>

In these results, the word “class” is used in the sense of a category; a type is a category of
values.

ExLEFFHR, [lclass] INFHRMAZXEZ—%, —MEERZHERN—MID,

Not surprisingly, integers belong to the type int, strings belong to str and floating-point
numbers belong to float.

RERT, BUMNHMEintT, FREMESTT, FRBFEfoatT,

What about values like '2' and '42.0'? They look like numbers, but they are in quotation
marks like strings.

A2 # '42.0'x MZAIE P EMNBFRERT, BEF T 2557,

>>> type('2')
>>> type('2')
<class 'str'>
>>> type('42.0"')
>>> type('42.0"')
<class 'str'>

They’re strings.
BEHEmE—MitRFERET,

When you type a large integer, you might be tempted to use commas between groups of
digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

PAIREHRA—DRINEL, EhpHAESSREXXE, ki1, 000, 000, HFA+=2
Pythond & & 508, BHHEEST

>>> 1,000,000
>>> 1,000,000
(1, o, @)

That’s not what we expected at all! Python interprets 1,000,000 as a comma-separated
sequence of integers. We'll learn more about this kind of sequence later.

HTEHIE, PythoniB 2S5 HM T 2R=1"ERRFHNDRTT. HMUEHExME
BT T

1.6 Formal and natural languages A =iz SMB AR E

il

Natural languages are the languages people speak, such as English, Spanish, and French.
They were not designed by people (although people try to impose some order on them);
they evolved naturally.

BARZEMEARNES, bz, mIIFE. &z, YASTERNXT ., MMEEER
ARAEFHELTHEEN (HR, AXBAELMEESNAE) , BAMA L &8

o

Formal languages are languages that are designed by people for specific applications. For
example, the notation that mathematicians use is a formal language that is particularly good
at denoting relationships among numbers and symbols. Chemists use a formal language to
represent the chemical structure of molecules. And most importantly: Programming
languages are formal languages that have been designed to express computations.

NKEERAMA THEERR L THEN, HIIBENFTSHE—HANEZS, Bi&
BRIV FNFAESRANNKR, EEZERUEATRATENEEZEARBRAXRRTD FRIEZEL

o BETHIE :

miZizER—MARXE2EMARNZE, Formal languages tend to have strict syntax
rules that govern the structure of statements. For example, in mathematics the statement 3
+ 3 = 6 has correct syntax, but 3 + = 3 $ 6 does not. In chemistry H20 is a syntactically
correct formula, but 27z is not.

NHESE P IRBGEEAN M3 AL HIER, LN FA3+3=62EHM, m
3+=3¥6MTE T, tF EH20 RIEWMILZERN, M2Zz WA =E,

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic
elements of the language, such as words, numbers, and chemical elements. One of the
problems with 3 += 3 § 6 is that $ is not a legal token in mathematics (at least as far as |
know). Similarly, 2Zz is not legal because there is no element with the abbreviation Zz.

EEANAEREARN AR, KSHgHn, KS2EEMWEATR, Lilea, HFUK
£#ETR, 3+=3 $6X PR FHELEELN—NMRRARZR Y $ HFARHZELHNFTS
(EVBIMENEZEREBEINFSHN), £LUh, 2Zz hARst, BAEE—MELETE
% B = Zz.

The second type of syntax rule pertains to the way tokens are combined. The equation 3 +=
3 is illegal because even though + and = are legal tokens, you can’t have one right after the
other. Similarly, in a chemical formula the subscript comes after the element name, not
before.

BIMBEANZRSLAE FRNAGEH, 3+=3ZX PR FHFLEZHEY &R
FERFSHEHNFRS, EREENSEFSH—E. L0, EEAERANPELEETR
2FRENE, MARRE,

This is @ well-structured Engli$h sentence with invalid t*kens in it. This sentence all valid
tokens has, but invalid structure with.

XAREN LA ML HS R, ARZZEERENG, (FE3FE, FEAEZIHT,
ERAALNBERZETHES.)

When you read a sentence in English or a statement in a formal language, you have to
figure out the structure (although in a natural language you do this subconsciously). This
process is called parsing.

Riz—HREHNE RN EEPRE AR, (RUARBRELEH (2REEREBEHRAR
BRRMERET) . IRUHSRE,

Although formal and natural languages have many features in common—tokens, structure,
and syntax—there are some differences:

e ambiguity: Natural languages are full of ambiguity, which people deal with by using
contextual clues and other information. Formal languages are designed to be nearly or
completely unambiguous, which means that any statement has exactly one meaning,
regardless of context.

e redundancy: In order to make up for ambiguity and reduce misunderstandings, natural
languages employ lots of redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.

e literalness: Natural languages are full of idiom and metaphor. If | say, “The penny
dropped”, there is probably no penny and nothing dropping (this idiom means that
someone understood something after a period of confusion). Formal languages mean
exactly what they say.

2ARRNEZEMERZEBEREHEERLE, LUORS. L0, BEILERTR, BENE
=R ER, i

e — 3 Mambiguity:

BREER/FH LM, URMEELT, AMARER L TXARSEELME S KB LIEX
FiER. 2RNEZEWETAREFAEEZLYE, ZMEKRE— M Z20FFEREH—HN—#E
L, BEETFTXEX,

o TL&Mredundancy:

A TR, AL fE, BARAEZEEEREZENR, 2RUMER2EERE. AR EEERHGN
2
%o

o N F{BFliteralness:

BRES % 5 EMreswZE, Lt “The penny dropped”, TREH TR FE = B I f i
TEMEZEBEGI T —24TFFHAT), 2N :zENEE=KfEH#E, Because we all
grow up speaking natural languages, it is sometimes hard to adjust to formal languages. The
difference between formal and natural language is like the difference between poetry and
prose, but more so:

e Poetry: Words are used for their sounds as well as for their meaning, and the whole
poem together creates an effect or emotional response. Ambiguity is not only common
but often deliberate.

e Prose: The literal meaning of words is more important, and the structure contributes
more meaning. Prose is more amenable to analysis than poetry but still often
ambiguous.

e Programs: The meaning of a computer program is unambiguous and literal, and can be
understood entirely by analysis of the tokens and structure.

BIAREBEBHREBREE KA, BRAFTILNZEARERE M, XBHEZHHE
8 R RF R ML, BEHNEKX :

e %33 Poetry:

#598E AEFRFE LAIFE, #HBREE —ENERNEBER LN, WRRER,
FEHZEHER,

o HE{3ZProse:
XFEREEE, sntBAEEZEFH, B R FERE, BEhF—EMNRKIERL,
o f2~Programs:

HENEFNELLARTR LM REHRN, EREANSHLEHmIA R #THENT.
Formal languages are more dense than natural languages, so it takes longer to read them.
Also, the structure is important, so it is not always best to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens and
interpreting the structure. Finally, the details matter. Small errors in spelling and punctuation,
which you can get away with in natural languages, can make a big difference in a formal
language.

AREEHLEREZEEETNESE, 2EXBEFEF K, 2N EENEHHIERE

ZE, LML BESIEMNEE AR ERESAR. KR L ZFEHHRERER, o
RS, Bifgh. REEIENMEREANEZED, @ FHRNER, HENFS
BN 2t FBREE KRR ML, BNz ERATMBER KK H.

1.7 Debugging %

Programmers make mistakes. For whimsical reasons, programming errors are called bugs
and the process of tracking them down is called debugging.

B R RILEN, BTESFUHNER, R4 #Hbug, Xt FEFWdebug
T, (3FEE: _A{%E%H@EE"JH%MEP BERFHESHERC XM, FERTF
FLRK T B AR R BVIRE, REES. o o)

Programming, and especially debugging, sometimes brings out strong emotions. If you are
struggling with a difficult bug, you might feel angry, despondent, or embarrassed.

%%z, LHZRRNIRE, AHESRA AT RBINRR R, B8 &00008, R
BERL R B AR, RHD, BRI AR,

There is evidence that people naturally respond to computers as if they were people. When
they work well, we think of them as teammates, and when they are obstinate or rude, we
respond to them the same way we respond to rude, obstinate people (Reeves and Nass,
The Media Equation: How People Treat Computers, Television, and New Media Like Real
People and Places).

D, IEFZEBAGHENNEER L, ENIEEET, TN EEMR
ERR—#; —BI{EHET, HNMNEMER, Btttk amEkE st FHEEAIR
BIA—# (Z#ReevesilNass, The Media Equation: How People Treat Computers,
Television, and New Media Like Real People and Places) .

Preparing for these reactions might help you deal with them. One approach is to think of the
computer, as an employee with certain strengths, like speed and precision, and particular
weaknesses, like lack of empathy and inability to grasp the big picture.

A XL RO IR A, XMERIEBEE LB RMEF 2t T, BB el LUE &L
WiH— M E—Er Bt EEEREMN AT, HEEREES, BRI m 3K
7 H I BE

Your job is to be a good manager: find ways to take advantage of the strengths and mitigate
the weaknesses. And find ways to use your emotions to engage with the problem, without
letting your reactions interfere with your ability to work effectively.

MO TERZENFN2EAN : RETOMA 7 T FREMORERIER. RAEE
FRIBIRIVIE 4 MARRR P £, MAR L sBIR & F 4 TEME,

Learning to debug can be frustrating, but it is a valuable skill that is useful for many activities
beyond programming. At the end of each chapter there is a section, like this one, with my
suggestions for debugging. | hope they help!

AXB L RRAAR, BXNRGREME, MEEREZHANEMSBESERHRZ
th, EE—EHKRE, BEEXHN—K, ZRAH—EXTAXRAENE, FEE
FHEIRR |

1.8 Glossary Ri&%3R

problem solving: The process of formulating a problem, finding a solution, and expressing it.
o AR P AR, HEBIFRAGE, FHERak HEMNERE

high-level language: A programming language like Python that is designed to be easy for
humans to read and write.

=%ES ¢ BlI0PythonX HHIRTZEE, R ITHRAZTERAA N E,

| ow-level language: A programming language that is designed to be easy for a computer to
run; also called “machine language” or “assembly language”.

K425 A HIRAZTHEAENZTHES, HHGRESMNLEES,
portability: A property of a program that can run on more than one kind of computer.
AIBENY : BFEREITTEMEQNET,
interpreter: A program that reads another program and executes it
fRsds « — iR — AT BRRER,

prompt: Characters displayed by the interpreter to indicate that it is ready to take input from
the user.

IRAFF : s al, RER A ESTY, BERETLUS A
program: A set of instructions that specifies a computation.
BF # 1T —MREEz EN—RINES,

print statement: An instruction that causes the Python interpreter to display a value on the
screen.

TENEA @ EPythonf# s 2 A EIFRHIIE R,

operator: A special symbol that represents a simple computation like addition, multiplication,
or string concatenation.

ZHR (REF) —RINFHRNFS, Re—EHEMNEE, HNNARGSHEFR
R HRIF,

value: One of the basic units of data, like a number or string, that a program manipulates.
B BUERERAK £ IT, IR FHEFRE, EEFLEMNR,

type: A category of values. The types we have seen so far are integers (typeint), floating-
point numbers (type float), and strings (type str).

FR st EBID %, ARRREMBINEERint, FR¥float, LUIKFRHstr,

integer: A type that represents whole numbers. 2% : FL22 80K, floating-point: A type
that represents numbers with fractional parts.

PR H 2, MEA/NERINET,

string: A type that represents sequences of characters.
FREE —REFNFRT.

natural language: Any one of the languages that people speak that evolved naturally.
BAEE AMtsizE, BAMRIL.

formal language: Any one of the languages that people have designed for specific purposes,
such as representing mathematical ideas or computer programs; all programming languages
are formal languages.

NiE AAEFVBATRERRNES, LNBERENETENSIERAN ; FiE
%&%;%%At =.

| n||||

token: One of the basic elements of the syntactic structure of a program, analogous to a
word in a natural language.

K5 BFEEuPN—MERTR, BETEREEFHE,
syntax: The rules that govern the structure of a program.
BE BB E s mBmnl.
parse: To examine a program and analyze the syntactic structure.
fix ERRERFHOWE RS MIEE
bug: An error in a program.
Bug : 2B %
debugging: The process of finding and correcting bugs.

B (debug) : HERMNIERF4 2T TR,

1.9 Exercises %4 7]

Exercise 1 %4 -] 1
It is a good idea to read this book in front of a computer so you can try out the examples as
you go.

Rz AR RFFHEE S, IHIMAEETEAGE b RN 2 TREEWUR
TO

Whenever you are experimenting with a new feature, you should try to make mistakes. For
example, in the “Hello, world!” program, what happens if you leave out one of the quotation
marks? What if you leave out both? What if you spell print wrong?

TR ARP M —MERTIBER e ik, EBATLUXBIE R4 2. HEAImEX D Hello,
World | 1 #2F, RATLLRXEE—TEISRELH, HEERELH, printiX D £5 5
#TRELEESE,

This kind of experiment helps you remember what you read; it also helps when you are
programming, because you get to know what the error messages mean. It is better to make
mistakes now and on purpose than later and accidentally.

Z 2 KR LR BN B A ERL et ; BB TIRRE, BAIRERZN X
WENEAXERNERE, AURKFAERNEIREH2KEE, LUREX ELME
NEHFZT,

1. In a print statement, what happens if you leave out one of the parentheses, or both?
Fprintiz A FEHMNESEE—IMHEAD, BERIELHAY

1. If you are trying to print a string, what happens if you leave out one of the quotation
marks, or both?

Print=? fF SR BUEHERINRIR A — DB SHE A DB SR XRERWME ?

1. You can use a minus sign to make a negative number like -2. What happens if you put a
plus sign before a number? What about 2++27?

BMA—DABURIR, -2, AEBERXERFRIERNNNSREL% ? i02++2,

1. In math notation, leading zeros are ok, as in 02. What happens if you try this in Python?
HWE L BASZF LZR LS, tbin02, 7EPython FTEXXREH ?

1. What happens if you have two values with no operator between them?

AN RREEERFRELHE?

Chapter 2 Variables, expressions and
statements T2, K&k, &0

One of the most powerful features of a programming language is the ability to manipulate
variables. A variable is a name that refers to a value.

HIZBERBANNEAZRFLIE, TEME—THANAKS,

2.1 Assignment statements 1 /& iZ)

An assignment statement creates a new variable and gives it a value:
WK EARFRAZAE—MNEE, FERAELEZINEE:

>>> message
>>> message
>>> n =
>>> n =
>>> pi
>>> pi

'And now for something completely different'
'And now for something completely different'

This example makes three assignments. The first assigns a string to a new variable named
message; the second gives the integer 17 to n; the third assigns the (approximate) value of
T to pi.

TEMmE= T aza06F, B—1TRIE—1TFREEH2LRWmessageIF % £ ;
BRIk A BT ; E=NMER B —MNMELE L Tpix N T =,

A common way to represent variables on paper is to write the name with an arrow pointing to
its value. This kind of figure is called a state diagram because it shows what state each of
the variables is in (think of it as the variable’s state of mind). Figure 2.1 shows the result of
the previous example.

TEAREAR LA TERENAEMRE LT, RE—1THiLiERNCH @, XMHEM#
Wk 5B, EACEEPREI TN TIEFE#MNET LRSS, TAREBR T LEAIFHR &
&R 5

message —s= "And now for something completely different’
n—s= 17
pl —= 3.1415926535897932

Figure 2.1: State diagram.

2.2 Variable names T £2&F§

Programmers generally choose names for their variables that are meaningful—they
document what the variable is used for.

BHENALBALATEENE —EELNEAFETRLEE, —REIMALERRRTZIN
'y;EE’\]ﬁﬁﬁETo

Variable names can be as long as you like. They can contain both letters and numbers, but
they can’t begin with a number. It is legal to use uppercase letters, but it is conventional to
use only lower case for variables names.

T ERTMREERES KABATLUN, S2FBHNEHFRT, BERETERABFERIT L. K
EFfHheEl, T x2BHRNEFRRAL T EME, IR ELR,

The underscore character, , can appear in a name. It is often used in names with multiple
words, such as your_name or airspeed_of unladen_swallow.

FTEREEIUETUE , —BREZSTEAARNTEREMEEMRETIL,

e bt

your_namex 3,

If you give a variable an illegal name, you get a syntax error:

MERLTERATEAN, MREIBELRZRRT ¢
>>> 76trombones = 'big parade'
>>> 76trombones = 'big parade'

SyntaxError: invalid syntax

>>> more@ = 1000000

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = 'Advanced Theoretical Zymurgy'
>>> class = 'Advanced Theoretical Zymurgy'
SyntaxError: invalid syntax

76trombones is illegal because it begins with a number. more@ is illegal because it contains
an illegal character, @. But what’'s wrong with class?

B—PNEFIFLURERAN, BINEFREFFQ, N DclassPERTIE ? 175
ng ?

It turns out that class is one of Python’s keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannot be used as variable names.

A 4 clas@Python BEBI— N K4E 8 ok, RIS AR ERNIEFNEY, XX
4R = ANEE R T 24,

Python 3 has these keywords:

LR 2Python3B89x 4239 14 -

e False class finally is

e return None continue for lambda

e try True def from nonlocal

¢ while and del global not

e with as elif if or

¢ yield assert else import pass

e break except in raise You don’t have to memorize this list. In most development
environments, keywords are displayed in a different color; if you try to use one as a
variable name, you'll know.

AR ZeeRER, AA—RASHENTL FEER, XgaBBX 5 TEERS
M BRR MR, RERRMNBTERT, —BARRINEN.,

2.3 Expressions and statements it I #1: A

An expression is a combination of values, variables, and operators. A value all by itself is
considered an expression, and so is a variable, so the following are all legal expressions:

K NEHE TEMREFNASG, 2 MERFHHEIFE—TREX, TEHIML,
THxEMFHRE—EERRERN

>>> n
>>> n

>>> n +
>>> n +

When you type an expression at the prompt, the interpreter evaluates it, which means that it
finds the value of the expression. In this example, n has the value 17 and n + 25 has the
value 42.

HMAERTHEERE—TMRREN, BESmH—T, eHIx I REaANE, &
AFHBIFH, nBE217, FLAn+258L2427,

A statement is a unit of code that has an effect, like creating a variable or displaying a value.

ERE—HEERLENRNNK S, Il &, E T M.

>>>n = 17
>>>n = 17
>>> print(n)
>>> print(n)

The first line is an assignment statement that gives a value to n. The second line is a print
statement that displays the value of n.

THE—ITMEREER, 4nkE. BZTE T niE,

When you type a statement, the interpreter executes it, which means that it does whatever
the statement says. In general, statements don’t have values.

mAEENE{E, BREINTE, MERRRZEMINER. —Riza25%8F4
E/\]O

2.4 Script mode BIAIE

So far we have run Python in interactive mode, which means that you interact directly with
the interpreter. Interactive mode is a good way to get started, but if you are working with
more than a few lines of code, it can be clumsy.

M EFHA—EERAPythonNRERN, MEEEANARBESRERIE, TP
X AEREEFR, BINRIFEE—Rz2TETRE, IHERRTIARET.

The alternative is to save code in a file called a script and then run the interpreter in script
mode to execute the script. By convention, Python scripts have names that end with .py.

FIUATAE 5 — M2 7, IBRBRERA, REHABAE AR 238K T L
X, BEEPythonfll A HRI Y B&Z.pYo.

If you know how to create and run a script on your computer, you are ready to go. Otherwise
| recommend using PythonAnywhere again. | have posted instructions for running in script
mode at http://tinyurl.com/thinkpythonZ2e.

MRRFEE L BN THA, BRREEZBES e LE2XEFT. SNERMEURE
&= APythonAnywhere, X FRIAERWNTBEREIM LT, FTHX N
(http://tinyurl.com/thinkpython2e) & T4,

Because Python provides both modes, you can test bits of code in interactive mode before
you put them in a script. But there are differences between interactive mode and script mode
that can be confusing.

Python® M X &>, FRLMRALIEARBEEX MR X, RAEEEXHEE, HZEA
MRz A BLEX 589, ATLARTREEERR M,

http://tinyurl.com/thinkpython2e
http://tinyurl.com/thinkpython2e）去看下哈。

For example, if you are using Python as a calculator, you might type : #/NM5lF0g, Hoilea
#118Python& i+ E2H, R ALUTHE :

>>> miles = 26.2
>>> miles = 26.2
>>> miles * 1.61
>>> miles * 1.61
42.182

The first line assigns a value to miles, but it has no visible effect. The second line is an
expression, so the interpreter evaluates it and displays the result. It turns out that a
marathon is about 42 kilometers.

FB—1ToAmilesE N T ERYE 2EE 262EEE2 0 RMLLELIZEXE) , BEEE
e WR, BEITR—TNRRET, BeRstEx NRAN, RARIELRiHE. £RH
EEZHMNERKREMRERERNE, BERER2LENR,

But if you type the same code into a script and run it, you get no output at all. In script mode
an expression, all by itself, has no visible effect. Python actually evaluates the expression,
but it doesn’t display the value unless you tell it to:

R MESEHEE LR aTRHAREET, SLBERIN, RAHE, EHAE
AR RERHH L MR, Pythonfi & Bixtiku, BRL TR, BEIL
RIRFBE R H—T :

miles = 26.2
print(miles * 1.61)

This behavior can be confusing at first.
X FIER IR B AR ELEY,

A script usually contains a sequence of statements. If there is more than one statement, the
results appear one at a time as the statements execute.

HA—IREBEAEE T —RIELEE, IREZVEL—FK, FDEORTHHEER 2R
2R, LLINTFEZXA :

For example, the script

print(1)
X = 2
print(x)

produces the output

MR RIT

The assignment statement produces no output.
SRR AT p e Ny R = CIE otan]= 118

To check your understanding, type the following statements in the Python interpreter and
see what they do:

& MR TR, BTEXEEAM ARPythonf#ids, BERLEMHL

5x=5x+1

Now put the same statements in a script and run it. What is the output? Modify the script by
transforming each expression into a print statement and then run it again.

AEBILEENEDMHARHEAS, AEAPythonkiz1T— T, BEHER #0720
AR FREER—T, F5—NEIN—NTEHZTE XX

2.5 Order of operations iz B &£ 55 2%

When an expression contains more than one operator, the order of evaluation depends on
the order of operations. For mathematical operators, Python follows mathematical
convention. The acronym PEMDAS is a useful way to remember the rules:

KIAAERLEFLE—NE2ER, XERENEBLEERFIEE ERFEMTTE L, T
FH#Fz B, PythonstBEEHZE LM, FEXPNPEMDAS, ¥ i icix
85 0k Se | BBF A0

e Parentheses have the highest precedence and can be used to force an expression to
evaluate in the order you want. Since expressions in parentheses are evaluated first, 2
(3-1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to make an expression
easier to read, as in(minute 100) / 60, even if it doesn’t change the result.

ESANRNE &KL, ARTLUAESKEFERZTEAXNARTE, T2 (3-1) mEF
F47, (1+1) ** (5-2) FE2MIL A, FT8, FEHEESHEE T LIRIRSE N izEFE
BB, Lol (minute 100) /60, X MR aitELR, T3 EEXS TIEH,

e Exponentiation has the next highest precedence, so 1 + 2**3is 9, not 27, and 2 * 3**2 is
18, not 36.

BRTIES, FMEZERR, T'ARMKIE, AT + 293 ERE2IMAR27, 2*3*24%
=18, MA =36,

e Multiplication and Division have higher precedence than Addition andSubtraction. So
2*3-1is 5, not 4, and 6+4/2 is 8, not 5.

FebRiz EEEMAAMTE, BEAAARAREIET, ZIPHIAT@H T,

e Operators with the same precedence are evaluated from left to right (except
exponentiation). So in the expression degrees / 2 * pi, the division happens first and the
result is multiplied by pi. To divide by 2 11, you can use parentheses or write degrees / 2

/ pi.
B %z ERMNEFERAT, ’ARN. s MEF@mit T, BE %,

| don’t work very hard to remember the precedence of operators. If | can’t tell by looking at
the expression, | use parentheses to make it obvious.

BARTEERASFKelex Lz ERFI® TR, MNRFeFAEFR, SEAESE L LR
Rt —LEmIF T,

2.6 String operations FF R /E

In general, you can’t perform mathematical operations on strings, even if the strings look like
numbers, so the following are illegal:

—RBERT, ANTEAFFHE#ATRF2EYN, MEFHFRELEREHFHAT,
FTLALLT iX L8R 2 IR IR IRAF -

'2'-'1! 'eggs'/'easy’ "third'*'a charm'

But there are two exceptions, + and *.
g+ AT LA R fFe& L H,

The + operator performs string concatenation, which means it joins the strings by linking
them end-to-end. For example:

+MSNEBREFHEHET, FEANFREHE—E, NTAE:

>>> first = 'throat'
>>> first = 'throat'
>>> second = 'warbler'
>>> second = 'warbler'

>>> first + second
>>> first + second
throatwarbler

The operator also works on strings; it performs repetition. For example,'Spam'3 is
'SpamSpamSpam’. If one of the values is a string, the other has to be an integer.

ESthpER iz BRI LIAEFAELEH, MRMUEEES. Li1'Spam'3 L£REE

'SpamSpamSpam', EE T =R, FEFENEF BN AEHET, This use of + and
makes sense by analogy with addition and multiplication. Just as 43 is equivalent to 4+4+4,
we expect 'Spam'*3 to be the same as'Spam'+'Spam'+'Spam’, and it is. On the other hand,
there is a significant way in which string concatenation and repetition are different from
integer addition and multiplication. Can you think of a property that addition has that string
concatenation does not?

BRMINEMIE L i LILEHHEMESENER. MIR43FRT4+4+4—4%, 'Spam'3 L
FT'Spam'+'Spam’+'Spam', AN —HHEH, FREHNHEEESBEHNNEREZLE L
EX 5], MEBIINEERERUERFABEMTAERNS?

2.7 Comments &

As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out what it
is doing, or why.

EFRIUREER, BBELT, wEXKARERT, ANZEREBE, TN KER
3, LE2RERN,

For this reason, it is a good idea to add notes to your programs to explain in natural
language what the program is doing. These notes are called comments, and they start with
the # symbol:

K TR R, AN LURIN—LE L2 BKaH, ERFHNIHERBREEE
fRE—T. IMEEMILERT, ERAHSHRFT LN

compute the percentage of the hour that has elapsed percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the end
of a line:

AR B E—1T, A LREITRE

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on the execution of
the program

HS#EENATHIKABE, HEFER -ni2FRETER,

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure out what the code does; it is more useful to
explain why.

— TR R A RMAAR DI — LR B, —RIER TR & AR AR
BIIIEER T2, FTUAERSEERAIHEMIBEMNZENT 4.
This comment is redundant with the code and useless:

ZNMERMEARARLERE, REZLE

v = # assign 5 to v

This comment contains useful information that is not in the code:
XMERTESTEERGR, MEEET :

v = # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make
complex expressions hard to read, so there is a tradeoff.

TEMATEEE, MRLERXZIRT, TEEFERAKT, KAkt
R, FTUREREEER T,

2.8 Debugging i X

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic
errors. It is useful to distinguish between them in order to track them down more quickly.

RBEFE—RESB=MER @ 2A42, BT8R MELE R, Rox=fg 2 G8FER

R HIE R %

e Syntax error: “Syntax” refers to the structure of a program and the rules about that
structure. For example, parentheses have to come in matching pairs, so(1 + 2) is legal,
but 8) is a syntax error. If there is a syntax error anywhere in your program, Python
displays an error message and quits, and you will not be able to run the program.
During the first few weeks of your programming career, you might spend a lot of time
tracking down syntax errors. As you gain experience, you will make fewer errors and
find them faster.

&35 4% 3% Syntax error:

BEREREFHNE RN, HINFESENA, MRMOEFEE MG R T 354
i%, PythonZx 2 RHE#EEIFRE, BFEMARETT. RFBF I RENZRE, fE
NS LB RExMER. FRerZT, EXBHL 7T, MEARREZLAT,

¢ Runtime error: The second type of error is a runtime error, so called because the error
does not appear until after the program has started running. These errors are also
called exceptions because they usually indicate that something exceptional (and bad)
has happened. Runtime errors are rare in the simple programs you will see in the first
few chapters, so it might be a while before you encounter one.

iz {74412 Runtime error:

B iR ElTEE, EMBNT, MERER @ T EF B2, Xzt
WUHERE, Ay —RRI—EEANLER L REEMNBERLET,

e Semantic error: The third type of error is “semantic”, which means related to meaning. If
there is a semantic error in your program, it will run without generating error messages,
but it will not do the right thing. It will do something else. Specifically, it will do what you
told it to do. Identifying semantic errors can be tricky because it requires you to work
backward by looking at the output of the program and trying to figure out what it is
doing.

3& 4% 1% Semantic error:

BE=MEEE L%, REEL, BIRELMEX, xMa iz 2ERNERETRRE, BA
FEARER, BTFRERIE. BEFTREM LM%t BNTRNER. £ 05 LR
IAES, FERMFeRRaMEFnd, ERERIEERMT 24,

2.9 Glossary Ki&5z%

variable: A name that refers to a value. T £ : HEHE,
assignment:

A statement that assigns a value to a variable.
WA DX EW T 1.

state diagram: A graphical representation of a set of variables and the values they refer to.
RExE : ARAEREED T E04E,

keyword: A reserved word that is used to parse a program; you cannot use keywords like if,
def, and while as variable names.

Khed) - RARBNATEAZFNE, TRAXEASMTES.

operand: One of the values on which an operator operates.
= HH . ERPR 1T BIRFREA.

expression: A combination of variables, operators, and values that represents a single result.
FxN —ETE. sBHNAS, SFE2AFHNER,

evaluate: To simplify an expression by performing the operations in order to yield a single
value.

K BR2AMRTNEFHREHE, S2—12MrE.

statement: A section of code that represents a command or action. So far, the statements we
have seen are assignments and print statements.

Bl —ARTI—MeTHEHFNNRS, BRI T RNRBR A5 2MITEE .,
execute: To run a statement and do what it says.
BT F—FREAHITET,
interactive mode: A way of using the Python interpreter by typing code at the prompt.
RERN BRI FEMANRD, LRk TRDER,
script mode: A way of using the Python interpreter to read code from a script and run it.
BIARR - o RFHREAXY, ARz TR,
script: A program stored in a file.
A : BT FRBI X4,

order of operations: Rules governing the order in which expressions involving multiple
operators and operands are evaluated.

= BRFRE % « ARz BRFHz BER# T ERNRTIRF.
concatenate: To join two operands end-to-end.
B Ba Pz B RBEEED—E,

comment: Information in a program that is meant for other programmers (or anyone reading
the source code) and has no effect on the execution of the program.

E 0 BREPAESRsRaE LMz THRNLEER, BELH 22BN ELH,

syntax error: An error in a program that makes it impossible to parse (and therefore
impossible to interpret).

BE R BRI LR, FEREFTREERSSRRE, RTEETT.
exception: An error that is detected while the program is running.

FH EFE THERR BB,
semantics: The meaning of a program.

iE L RFRIE L,

semantic error: An error in a program that makes it do something other than what the
programmer intended.

L45iE BFE TS RMBAVENA—, RETKETHIIE, MeT 7T RE MmN
$|ﬁo

2.10 Exercises %4 7]

Exercise 1 %4 -] 1

Repeating my advice from the previous chapter, whenever you learn a new feature, you
should try it out in interactive mode and make errors on purpose to see what goes wrong.

BE—E—#, BEEH, TRETHLFARE, MEBREEREER LHEILER4
i%, EEK:L;\A#?O

e We've seen that n = 42 is legal. What about 42 = n?
HBMEERN Tn=422 7 LARY, A42=nEo# ?

e How aboutx=y=17?

BiXiXx=y=10E ?

¢ |n some languages every statement ends with a semi-colon, ;. What happens if you put
a semi-colon at the end of a Python statement?

B EEENEAZEAVFENL3E5HEDS, KXEPythonI KRB NVEH ?
e What if you put a period at the end of a statement?
BAREBNEZXRIE ?

¢ |n math notation you can multiply x and y like this: x y. What happens if you try that in
Python?

#F _EARAT LUBXFyHERE Mixy, PythonEERiX 24X X & ?

Exercise 2

Practice using the Python interpreter as a calculator:

1. The volume of a sphere with radius r is 4/3 11 r3. What is the volume of a sphere with
radius 57?

2. Suppose the cover price of a book is $24.95, but bookstores get a 40% discount.
Shipping costs $3 for the first copy and 75 cents for each additional copy. What is the
total wholesale cost for 60 copies?

3. If I leave my house at 6:52 am and run 1 mile at an easy pace (8:15 per mile), then 3
miles at tempo (7:12 per mile) and 1 mile at easy pace again, what time do | get home
for breakfast?

BPythonfi# 25 H i+ BaRRIM T EB4 3

1. BEERE=02EENE BRFLUERILA, KERHSHBRIEER,

2. IA—XRBHHNEE+#MNZE24.955%7T, BETNIT. F—Az HE%3FmT, B8N
— AWz % B75FED, 7 Z60R—HEBEL DRI ?

3 HELEARA+TZAOHNIER, U8 ERT —RE, XLU7: 1205 EHT=%
B, AEX=E8: 15 HEH—XKE, OEIRLZEE/LR?

Chapter 3 Functions B #X

In the context of programming, a function is a named sequence of statements that performs
a computation. When you define a function, you specify the name and the sequence of
statements. Later, you can “call” the function by name.

FEREREET, WEXMNERBES—RIZEANAS, XLEZAHETN—MiEz
B, ELHERA R, MEAZXIIHBEE—TET, sAEFEHILERTEENE
A, BTG, TR LLET AR E R R,

\|

3.1 Function calls E#%:8 B

We have already seen one example of a function call:
LRI B2 Rin i WBUE AN —MIF T

>>> type(42)
>>> type(42)
<class 'int'>

The name of the function is type. The expression in parentheses is called the argument of
the function. The result, for this function, is the type of the argument.

I PNEBEFrLZpye, ESEEMMR: AUMIERBNSH, xPEBLRERME
S £ B,

It is common to say that a function “takes” an argument and “returns” a result. The result is

also called the return value. Python provides functions that convert values from one type to

another. The int function takes any value and converts it to an integer, if it can, or complains
otherwise:

—R&K i, RBHEEN—DSE, “BE—PMER, g REKUWEHRE/E, PythoniZ
7 —LE ik B X BRI, tilintix DL AT LB @ s e B EE T, (BREH 48D
BEAERY, BRITNEEM MRS RE T, WTFAR :

>>> int('32"')

>>> int('32"')

>>> int('Hello')

>>> int('Hello')
ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesn’t round off; it chops off the
fraction part:

intiX DEREEEIEIE REUAE R ETY, BRERRTE, NIEROMEBLRIET
>>> int(3.99999)
>>> int(3.99999)

>>> int(-2.3)
>>> int(-2.3)

float converts integers and strings to floating-point numbers:
floatBBIB B FRI R # T BUFE R

>>> float(32)

>>> float(32)

92,0

>>> float('3.14159")
>>> float('3.14159")
3.14159

Finally, str converts its argument to a string:

&EXRET, stral UESE T FRES ¢

>>> str(32)

>>> str(32)

|32l

>>> str(3.14159)
>>> str(3.14159)
'3.14159'

3.2 Math functions

Python has a math module that provides most of the familiar mathematical functions. A
module is a file that contains a collection of related functions.

PythonRiE T —PMNEEZEEH:, X—ERRHT AR ERNEZEEY. BREmE—%
SURE R BIE S BB

Before we can use the functions in a module, we have to import it with an import statement:

EERERRRERE R, BAKBESAZIMES:, ER$AZE:

>>> import math
>>> import math

This statement creates a module object named math. If you display the module object, you
get some information about it:

BENEABIIT —PMESRGR, BFUWHmath, IRMFEEMERGRET— T, {F7E
2BIEZEXMERT

>>> math
>>> math
<module 'math' (built-in)>

The module object contains the functions and variables defined in the module. To access
one of the functions, you have to specify the name of the module and the name of the
function, separated by a dot (also known as a period). This format is called dot notation.

B REET —LELELFHNRBMNLTE, BEERRNEEE, EAR (B2
RXNET) Kk ER:BHEEA, T)E_Juoﬂﬁﬁ HEMERET .

>>> ratio = signal power / noise_power

>>> ratio = signal_power / noise_power
>>> decibels = * math.logl0(ratio)
>>> decibels = * math.logl0(ratio)

>>> radians
>>> radians
>>> height = math.sin(radians)
>>> height = math.sin(radians)

The first example uses math.log10 to compute a signal-to-noise ratio in decibels (assuming
that signal_power and noise_power are defined). The math module also provides log, which
computes logarithms base e. 58— MMolF A T HFEMIog10MHE, K+ BEEELMD 1@

(R (ESREMEZTEELANRENT) . HEERREHLRM TIog, HERERENHAIEH
#, The second example finds the sine of radians. The name of the variable is a hint that
sin and the other trigonometric functions (cos, tan, etc.) take arguments in radians. To
convert from degrees to radians, divide by 180 and multiply by Tr:

BN FRAME A FIER @, Bid T ERMR RN HERUREMH=AK
3 (tt?ﬂ%%\ EYEE) HERAIMEEIFHSE. FrAEEAEREME 550
B, HERZEMRLI180A G ERERUR AET

>>> degrees
>>> degrees
>>> radians = degrees / * math.pi
>>> radians = degrees / * math.pi
>>> math.sin(radians)
>>> math.sin(radians)

The expression math.pi gets the variable pi from the math module. Its value is a floating-
point approximation of 1T, accurate to about 15 digits.

math.piix PR AMBEE B PF BT — D REBHE 15 BNELME, FHR—TMER
%&O

If you know trigonometry, you can check the previous result by comparing it to the square
root of two divided by two:

TRT=ZAR#AE, RUURREE2HEARIRUZ, RAEHHE—TxPERML—

TR

>>> math.sqrt(2) / 2.0
>>> math.sqrt(2) / 2.0
0.707106781187

FEX BN ZATMAET, 45EAREAYE LM, MULAR2HEART,
ﬁﬁ%E%%%@%E MaT o KR i%eEIRAEIE ?

3.3 Composition 2 &

So far, we have looked at the elements of a program—uvariables, expressions, and
statements—in isolation, without talking about how to combine them.

BRiALE, BMNBEZ2LRT —PMEFMAEENARBOTHRET : TE. RN, B8, K
it MNEAR— TR REIN, BRBIEENLEEERXK.

One of the most useful features of programming languages is their ability to take small
building blocks and compose them. For example, the argument of a function can be any kind
of expression, including arithmetic operators:

— 4122 SRBANINERR Ty M— TN IMERES R F. IINRENSHA
DURER—MERui, 2EABzERF

X = math.sin(degrees / 360.0 * 2 * math.pi) B

And even function calls:

BRERBRARES R UE LS

x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one
exception: the left side of an assignment statement has to be a variable name. Any other
expression on the left side is a syntax error (we will see exceptions to this rule later).

RE] AR A I —ME, R — A%kT,A — IS — N FEELERNER
BT ER, EAEMHNRIARIFSELIMEFBE RS2 (GREEHNN, F

2BLNY) .

>>> minutes = hours * 60 # right

>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
>>> hours * 60 = minutes # wrong!

SyntaxError: can't assign to operator

#EE P FEEERAXNEH Y T ERTTH, FrstBIBISME -+ 2B L KR
Bk, ZTEEERBK.

3.4 Adding new functions NINFTE X

So far, we have only been using the functions that come with Python, but it is also possible
to add new functions. A function definition specifies the name of a new function and the
sequence of statements that run when the function is called. Here is an example:

BRIFA1FE T —LPython B # K, BoRMHAHEREEE TN, REELEE
EL/P/D"?@E’\J%%, RHBBE-RI AR NREET, ZHiHAX DR,
MERETxEZET,

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print("I sleep all night and I work all day.")

def is a keyword that indicates that this is a function definition. The name of the function is
print_lyrics. The rules for function names are the same as for variable names: letters,
numbers and underscore are legal, but the first character can’t be a number. You can’t use a
keyword as the name of a function, and you should avoid having a variable and a function
with the same name.

XEBEMdefflZ— TN R4, BERERXEZAEEL —TEE. HEWELFREprint_lyrics,
R EANTNE EREANERERS, BEFEMFHE T, BRTERK
FH k. ZAETREAXEAMEEEG, 2EIRREHANBELNEIERLETE,

The empty parentheses after the name indicate that this function doesn’t take any
arguments.

HHLZEENESEZEN, BREREEXTMHBATNFTESH,

The first line of the function definition is called the header; the rest is called the body. The
header has to end with a colon and the body has to be indented. By convention, indentation
is always four spaces. The body can contain any number of statements.

BREUE L BIR—1TUME L8R, R T RIS, BB REBLAE—1TES, B

R o5 2 A8 v BRI Sk BB A 45 ¢ Y, Eﬁ%ﬁéﬂ‘ﬁﬁ?ﬁ?éﬂl%zﬁm NEMRHIEER., B
FAUEERE KENZE,

(G2EE : AR PythonsRFIMEK, 7N+ H9EN* FARIMarkDown7E 4 B B B X T BE SR 4 BE
WEELH, TUARZEIE—TEDAER, XMERXEZE!) The strings in the print
statements are enclosed in double quotes. Single quotes and double quotes do the same
thing; most people use single quotes except in cases like this where a single quote (which is
also an apostrophe) appears in the string.

ETEE2EH, ETHNFHEFTERRNSISHEE, £5I5HMMEISHR—#, RIEZ
FREPEEHERT 25|15, AR—IREB=EHLEIS5H,

All quotation marks (single and double) must be “straight quotes”, usually located next to
Enter on the keyboard. “Curly quotes”, like the ones in this sentence, are not legal in Python.

FTERIB| S8t £ FEZEES SN, TieeisI5xNEI5, meds
A NI, “Curly quotes”x#5|5, TEPythonEMHEZIEER,

If you type a function definition in interactive mode, the interpreter prints dots (...) to let you
know that the definition isn’t complete:

MRRAEREERNX TEHELEE, BESRITF=ZNNRRIRBEIRE L EZBTM

>>> def print_lyrics
>>> def print_lyrics

print("I'm a lumberjack, and I'm okay.") ...
print("I sleep all night and I work all day.") ...

To end the function, you have to enter an empty line. Defining a function creates a function
object, which has type function:

EERHMELSTENERE, DHAMA—ITELT. EXLHBINE—IMEB LR, &
type L,

>>> print(print_lyrics)

>>> print(print_lyrics)

<function print_lyrics at Oxb7e99e9c>
>>> type(print_lyrics)

>>> type(print_lyrics)

<class 'function'>

The syntax for calling the new function is the same as for built-in functions:

A RFEENEZENARRNERSEE —#8

>>> print_lyrics()
>>> print_lyrics()
I'm a lumberjack, and I'm okay. I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For example, to
repeat the previous refrain, we could write a function called repeat_lyrics:

—BRELT — 1 EH, AALUEECHNEERARINEE, thilanEE—TR)
Rt i, BE— Pl &Erepeat_lyricsEIEEL,
def repeat_lyrics()

print_lyrics()
print_lyrics()

And then call repeat_lyrics:

AREAA—TX DR

>>> repeat_lyrics()
>>> repeat_lyrics()
I'm a lumberjack, and I'm okay. I sleep all night and I work all day. I'm a lumberjack, a

A — 1 i

But that’s not really how the song goes.

HRT, ERXBXANEZXFRE,

3.5 Definitions and uses E s F{#

Pulling together the code fragments from the previous section, the whole program looks like
this:

LR mx ENRNRSRES—T, BERLEFEEABEXIH#H

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print("I sleep all night and I work all day.")
def repeat_lyrics()
print_lyrics()
print_lyrics()
repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics. Function
definitions get executed just like other statements, but the effect is to create function objects.
The statements inside the function do not run until the function is called, and the function
definition generates no output.

XMEFTE A DEHEMIE L @ print_lyricsLL Krepeat_lyrics, ENEUE LB ITRL A H Atk
EA—H, ERMERERE MR, HEELHz20ERRNEEA AN EY Rz
17, WEMELEREFRRE R MM,

As you might expect, you have to create a function before you can run it. In other words, the
function definition has to run before the function gets called.

WMRRRE T, {RALIBII—PNEE, RFET— KK T. #MitEmE, TRAMAZE
—EZFEEREBE LF,

As an exercise, move the last line of this program to the top, so the function call appears
before the definitions. Run the program and see what error message you get. Now move the
function call back to the bottom and move the definition of print_lyrics after the definition of
repeat_lyrics. What happens when you run this program?

A%, BINMEFHIRE—THREIMES, XHERBAAMERBELLZBI T, &E1T
—FTEELHEMNERRMH 4.

RIEBIBREGEBMEIESR, #Bprint_lyricsix MNEREHIE L Erepeat_lyricsix N
B, BEERXRETRHEAMNLETF?

3.6 Flow of execution iz 1T 12

To ensure that a function is defined before its first use, you have to know the order
statements run in, which is called the flow of execution.

A THEE—DEBEEREARCIIELEL, MU FAEZEEZDETHFE, B2
Arig iz 1T0RFRd .

Execution always begins at the first statement of the program. Statements are run one at a
time, in order from top to bottom.

— P PythonF2F#EME— Nz A FIRE TN, MBERE, BRET—MNEA,

Function definitions do not alter the flow of execution of the program, but remember that
statements inside the function don’t run until the function is called.

HBHE L H AR RFEITRE BRIER, RBERENZHRBEREHRA
AmsHEY RiE17.

A function call is like a detour in the flow of execution. Instead of going to the next statement,
the flow jumps to the body of the function, runs the statements there, and then comes back
to pick up where it left off.

HEARAMBREREZTRER T BT Y. REEEERITTF—NEE, 21TRBAZ
AR, zTEENER, AREBLERMEFRIHTT gL MIT,

That sounds simple enough, until you remember that one function can call another. While in
the middle of one function, the program might have to run the statements in another
function. Then, while running that new function, the program might have to run yet another
function!

XBERAAZET, RBMRCE-TERBEILLUAR 3 — T U7, E—PEHHS
B, BEFEAEAERGEIT - FTEMRHAPREE, Uz THNERSN R, EFAEE
s & T H A BIEREL |

3EF BERLME, HeEBgem, SREKEKAEEARAME. Fortunately, Python is
good at keeping track of where it is, so each time a function completes, the program picks
up where it left off in the function that called it. When it gets to the end of the program, it
terminates.

FizE, PythonRETBER M iz HATHAE, PRIUABR—IMEREMTRET, EFE
ZOE L B HBE, ARE%L5ET. FHITEITREFRNKRE, MALT,

In summary, when you read a program, you don’t always want to read from top to bottom.
Sometimes it makes more sense if you follow the flow of execution.

BB, AR T REFHEE, AT —ELE2EMLIEREN, AERRERR
E(TRAER T B IR,

3.7 Parameters and arguments T2 XS 8#1 2 x5

FET xBRINPSH 2SR r L2 HAaARNEK S, SNMERERNHEANTREF
R R AR BGR AR, R IR SR A AR EHE & A BN S ; MK A ST LIE
R AHERBELANSH, EAMZINEHRBRS, ZBERETAS, BrEBE,
ARETUEM EZ-HR—T, HinfEStackOverflowF IMSDN Some of the functions we have
seen require arguments. For example, when you call math.sin you pass a number as an
argument. Some functions take more than one argument: math.pow takes two, the base and
the exponent.

HMELBIT—ERAT, NEIFTERFSH. LINSREAYFHEKRHRB
ERATELE—TRAFEH LFSH, ARNRAFTE-TULNE RS, LLisE
HHRBFEAT, —TREH, —TEFRRK.

Inside the function, the arguments are assigned to variables called parameters. Here is a
definition for a function that takes an argument:

ARHER, RSB EBRELTASH, TEME —MER 2D 2 mSHEREN
TESL
def print_twice(bruce):

print(bruce)
print(bruce)

http://stackoverflow.com/questions/1788923/parameter-vs-argument
https://msdn.microsoft.com/en-us/library/9kewt1b3.aspx

This function assigns the argument to a parameter named bruce. When the function is
called, it prints the value of the parameter (whatever it is) twice. This function works with any
value that can be printed.

EPNERBIC 4 RN E R BB @ T — N aFUSburce I NS, HEE4R AR
iHE, BMRITENHEASHBE AR (EREMHLRE) . EARITMAEESRERTX
N,

>>> print_twice('Spam')
>>> print_twice('Spam')
Spam

Spam

>>> print_twice(42)

>>> print_twice(42)

>>> print_twice(math.pi)
>>> print_twice(math.pi)

The same rules of composition that apply to built-in functions also apply to programmer-
defined functions, so we can use any kind of expression as an argument for print_twice: &
A FPython BB A SN 3t B E L MWEBHEZEAM, U MNTUBREEH 2
RS

>>> print_twice('Spam '*4)

>>> print_twice('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))
>>> print_twice(math.cos(math.pi))

The argument is evaluated before the function is called, so in the examples the expressions
'Spam "4 and math.cos(math.pi) are only evaluated once. You can also use a variable as an
argument:

EFSHERBHARCIRERKEE—T, MULAMNFHRELZHSEARITRE
NEBRAEprint_twiceBENHUA A Z BIGHE T —R,

LT, AR EMERSHT

>>> michael = 'Eric, the half a bee.'

>>> michael = 'Eric, the half a bee.'

>>> print_twice(michael)

>>> print_twice(michael)

Eric, the half a bee. Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do with the
name of the parameter (bruce). It doesn’t matter what the value was called back home (in
the caller); here in print_twice, we call everybody bruce.

BAEBAERBNX N EHERE— 1T T E, XN T EELmichael fIHBAEIF XS
bruce’k¥ BEMIXFR. ERFEARARNBSHEIERITT, SHEFHTHREANEEEE
FA 5 teanfE:x Pprint_twiceERE B @, F{I£KME, EXDprint_twiceEEUARN, &K
il f#bruce,

#FEE REERARER—T, #25HNHEANERmER, BIEXIMEmSHNa
XA RANEE, RBRMERE M, TUGEREREMEFHRASE, ETSHUX

=z
/Au/l\l%\% T o

3.8 Variables and parameters are local EI#{ NS %
s SE < RER

When you create a variable inside a function, it is local, which means that it only exists
inside the function. For example:

ERBRSMELI—TTE, ITEERRERBERBFTFE. 0 :

def cat_twice
cat = partl + part2
print_twice(cat)

This function takes two arguments, concatenates them, and prints the result twice. Here is
an example that uses it:

BPMEBEBRANLS, BeiAEiER, AR Bprint_twiceBBUERMHH 2R AR,

>>> linel = 'Bing tiddle '
>>> linel = 'Bing tiddle '
>>> line2 = 'tiddle bang.'

>>> line2 = 'tiddle bang.'
>>> cat_twice(linel, line2)
>>> cat_twice(linel, line2)
Bing tiddle tiddle bang.
Bing tiddle tiddle bang.

When cat_twice terminates, the variable cat is destroyed. If we try to print it, we get an
exception:

Ycat twiceiz {7524 T, XINEFUHcat T EMERT . ANBLXEITHNE—T,

ARFIRE -

>>> print(cat)
>>> print(cat)
NameError: name 'cat' is not defined

Parameters are also local. For example, outside print_twice, there is no such thing as bruce.

ERASHth 2 FERIEAM, FlI0fEprint_twice X MR 2N, BAEFEEbrucex N T =
E/\JO

%%5i:é 4’]"_JLM£ @%Ex—AH%EEUlHWbruce, BxaNMEEXR, ARATLH

3.9 Stack diagrams #x

To keep track of which variables can be used where, it is sometimes useful to draw a stack
diagram. Like state diagrams, stack diagrams show the value of each variable, but they also
show the function each variable belongs to.

ZEFE— N L ERAETLEMERA, aMmMAUUENEREE R, IMERUMIAA.
HREMBNZARIRSABELERLY, BERESINETENE, TRANZAEZESHF
REEN T EFTERIERE,

Each function is represented by a frame. A frame is a box with the name of a function beside

it and the parameters and variables of the function inside it. The stack diagram for the
previous example is shown in Figure 3.1.

BNEEEE—MEZERR T, ERMND FEIARENEE, ERNEERBALHE
ST 2, EXHHAKLHREBIMNTEIAFT.

linel —= "Bing tiddle *
line2 —= tiddle bang.'

Main

part1 —= 'Bing tiddle
cal twice | part2 —= tiddle bang.’
cat —s= 'Bing tiddle fidde bang.'

prinl_lwice | bruge —= "Bing tiddle tidde bang.’

Figure 3.1: Stack diagram.

F3.1 A

The frames are arranged in a stack that indicates which function called which, and so on. In
this example, printtwice was called by cat_twice, and cat_twice was called by _main__,
which is a special name for the topmost frame. When you create a variable outside of any
function, it belongs to__main__

—PMRAHNXEEDRITHBGARANXRESE, ELEXMIFH, printtwicet
cat_twiceifd BT &R, Tcat twice#\ main_ X PNEEHGEM. main_ X MNEEER
Uk, BTN EZER, BHEUMEERE, DIREMARBZAEIL—N T EM{E, X
Nz EME T EREAME.

Each parameter refers to the same value as its corresponding argument. So,part1 has the
same value as line1, part2 has the same value as line2, and bruce has the same value as
cat.

BN ASHEMRE Tt RN 58803, Fitbpart189@fline1—4#, part28944 5t
Mline2—#, REIEAHbruceH @ Mcat—# 7,

If an error occurs during a function call, Python prints the name of the function, the name of
the function that called it, and the name of the function that called that, all the way back to
__main__

NREEA RN R4 T, PythonRITEIH X MHEKBNET, ARAXDHEREK
HEKEE, DUERARAZXMAR T HARSNEANEREE, —EENTETRHY. (FE
/EE . a}é)%uuéo o o TIZEKID@IEIEI%#S\IO)

For example, if you try to access cat from within print_twice, you get a NameError:

g0, ANRARIEFEprint_twice X NERE iz EcatlE, MATE—T T ERHE

Traceback (innermost last):

File "test.py", line 13, in __main__
cat_twice(linel, line2)

File "test.py", line 5, in cat_twice
print_twice(cat)

File "test.py", line 9, in print_twice
print(cat)

NameError: name 'cat' is not defined

This list of functions is called a traceback. It tells you what program file the error occurred in,
and what line, and what functions were executing at the time. It also shows the line of code
that caused the error.

—RINEHEIIR, MER—TEMT. XEFHIRFDEFXHET 4%, H—17
HjTéam, Lk St B T, 2RHHIFBIEE ZNRBAETS. (FE
T X NHERET, AR—EBZOXNIREURE SRS, UEERARMARRZbUg
E.)

The order of the functions in the traceback is the same as the order of the frames in the
stack diagram. The function that is currently running is at the bottom.

B R FIES ER A BN AERFE—#80. HEETHRESRERERR.

3.10 Fruitful functions and void functions A1k [0]4a

ROEKEN #0 JoiR [0l 48 BY KR

Some of the functions we have used, such as the math functions, return results; for lack of a
better name, I call them fruitful functions. Other functions, like print_twice, perform an action
but don’t return a value. They are called void functions.

g1 FI—LE N, HLINBEERIERE, #SR @%W%% 1% 51T R F, T
MARE &K, EMAEE, tbilprint twice, #Ru{T—LEiglE, BRREME, AL
U TR B 18 BN EUEF T o

When you call a fruitful function, you almost always want to do something with the result; for
example, you might assign it to a variable or use it as part of an expression:

HRAA—TERE AR R, —REESEFA—TLSRE; i, (RAURFE
BERREALENLE, ARARAAE@EFER—T :

X = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:
HIRERBERNA R —PER#N R, Python&E RER !

>>> math.sqrt(5) 2.2360679774997898
>>> math.sqrt(5) 2.2360679774997898

But in a script, if you call a fruitful function all by itself, the return value is lost forever!

IR ZHAIEL, wéﬁ—AﬁL@ﬁmx# B%BFAXROE, XROMEE
RAZERT ! (3EE: REGROAR—EEFNA!)

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store or display the result, it is
not very useful.

AR BETONTELR, BEEFHTE, REELTRHE, FUBMBRREAT.

Void functions might display something on the screen or have some other effect, but they
don’t have a return value. If you assign the result to a variable, you get a special value called
None.

TROEHNHERBELMZEFFLETE—ERE, ELRAEMNIIE, BR2EER
B, INRIRIEXHHBNLEREBL—PTE, ARBERIREE @ 22

>>> result
>>> result
Bing Bing
>>> print(result)
>>> print(result)
None

print_twice('Bing")
print_twice('Bing")

The value None is not the same as the string ‘None'. It is a special value that has its own
type:
ZfNone=ZZEMERE, MFRFHE'None'2F~—HMN., 2—MiFHKNE, FEEBECH
(B, (GFEE, BHEETFnulT.)

>>> print(type(None))
>>> print(type(None))
<class 'NoneType'>

The functions we have written so far are all void. We will start writing fruitful functions in a
few chapters.

A Br A L ENERBz AT REE R, & TRIHFHNE , BN EFFIRE—
LB REERIEHEE T .

3.11 Why functions? -4 EFREKE ?

It may not be clear why it is worth the trouble to divide a program into functions. There are
several reasons:

AN LEBEF X LEZNSKEREFIDR— D NEBE ? X MAERFL ?REMNT :

e Creating a new function gives you an opportunity to name a group of statements, which
makes your program easier to read and debug.

o HE—INHHIKE, MEelit—azafl—1N_2FRmA, XHFIRIREFZEFR
B T, BHI%IPAXBAE,

e Functions can make a program smaller by eliminating repetitive code. Later, if you make
a change, you only have to make it in one place.

RS BHARNBTTR, BFAN—LEEENATHSHLT, TEEN
15, MEEERATENRN R, RRIEXEHFN—2BARITLT, RAE,

¢ Dividing a long program into functions allows you to debug the parts one at a time and
then assemble them into a working whole.

o IMRMBBFIDR—MINEE, REtALl—% F Fdebugiix, BRA mxt—/NERD
AL, AREIEEMNAaERMATUET,

e Well-designed functions are often useful for many programs. Once you write and debug
one, you can reuse it.

o FmiXitHERBEWRERFHMERL, —BREHFTHART #, XMEHNSZ
LB,

3.12 Debugging &%

One of the most important skills you will acquire is debugging. Although it can be frustrating,
debugging is one of the most intellectually rich, challenging, and interesting parts of
programming.

SRR AR S EENRRIREREL—T. REAKNIESBERWR, HKRAZ
RHRED, xAEHhAM, BEKE %EPEE%ELE’J THHE T,

In some ways debugging is like detective work. You are confronted with clues and you have
to infer the processes and events that led to the results you see.

EMREEL, BRBEEMRIFE—#. (MESERSLR, DAHERE$HHEALRH
BN EMES

Debugging is also like an experimental science. Once you have an idea about what is going
wrong, you modify your program and try again. If your hypothesis was correct, you can
predict the result of the modification, and you take a step closer to a working program.

BHRBERE—T2BMPE, —BIRET —TXTRERN2EE, REESR—T
BFEERRE, IRMHBLZSERDN, My ABIIEBRSBNER, IHEHRE
BKEL, RREET—EAHT, BELEFIFERBELT.

If your hypothesis was wrong, you have to come up with a new one. As Sherlock Holmes
pointed out, “When you have eliminated the impossible, whatever remains, however
improbable, must be the truth.” (A. Conan Doyle, The Sign of Four)

SORARETHE M 255 1280, IR RIREHTRIR, MEE SR 8 RERZLBME, TR
PR TAAAIRERATLE, MTHELZELRE, BLRAREE. 1 (5IBMEE RN
Bt (BRERRE mEA))

For some people, programming and debugging are the same thing. That is, programming is
the process of gradually debugging a program until it does what you want. The idea is that
you should start with a working program and make small modifications, debugging them as
you go.

HF—EARN, HEMRXAE—OE, hEEi, HEREN—TEFZEHH#ITA
K, —EIREFRBEBIFEYLE, 3MBEEKREMREMN—RETLFNERRES,
— R R IME B FD 8 Ko

For example, Linux is an operating system that contains millions of lines of code, but it
started out as a simple program Linus Torvalds used to explore the Intel 80386 chip.
According to Larry Greenfield, “One of Linus’s earlier projects was a program that would
switch between printing AAAA and BBBB. This later evolved to Linux.” (The Linux Users’
Guide Beta Version 1).

Bign, Linux@—NMELEAITRSHNZEERE%, BERRBERRIRTLinus Torvalsdfy—Ex /I
K2, INNERFZIEE B EIFERINtelI80386:15 I, RIELarry Greenfield[El 1z,
FLinus BiEM -7 B2 R/NN—1NER, X DMIZFEES Ei HAAAATIBBBB [#1744
Heo XERMLEBRRTLinuxT, 1 (BIFABALinuxA 7 5% FMbetalhR)

3.13 Glossary R i&%I5%

function: A named sequence of statements that performs some useful operation. Functions
may or may not take arguments and may or may not produce a result.

HE : —RIEFzAOMNAE, EECHET, HERERLERERE, ATUEXRHA
S, LaLURESH, TLuUREE, B LU%EREE,

function definition: A statement that creates a new function, specifying its name, parameters,
and the statements it contains.

HEEL : Q| BHHANEE, BERANET, BXASH, URKERIRNZE,

function object: A value created by a function definition. The name of the function is a
variable that refers to a function object.

HE R - HRHAE LA ENE, HHEZFHERT X —EHHEAR,
header: The first line of a function definition.
HE L - REE LB —1T,
body: The sequence of statements inside a function definition.
HEUE - HEE LR —RINEFE 8,
parameter: A name used inside a function to refer to the value passed as an argument.
MRS ARERBREER L S8 kB E, FRESERBRERER,

function call: A statement that runs a function. It consists of the function name followed by an
argument list in parentheses.

HEGAR : 2 TENEHHNEE, SRTHRBNEZZURES, BeARERNEEN
G

argument: A value provided to a function when the function is called. This value is assigned
to the corresponding parameter in the function.

S ARBHA AR, RELARBWE, I NMESREREEEK, RAREA
‘EBE’\J%:‘&%HO

local variable: A variable defined inside a function. A local variable can only be used inside
its function.

BT E HEERELNTE, BT ERERBRIBEN,

return value: The result of a function. If a function call is used as an expression, the return
value is the value of the expression.

ROE : MBUREINLER, MR—PERBGARBRAAETRRN, IMOREEHERX DR
N PTR R,

fruitful function: A function that returns a value.
BIREEERE : — et %R0l a B ER .
void function: A function that always returns None.
RO EEE - FAREME, RiREl—NZENoneFI B,
None: A special value returned by void functions.
2248 : FoaR[O]4a ERER AT IR (3] Y — PR IRBY AL
module: A file that contains a collection of related functions and other definitions.
B 22— RINBEXRHBUARE M —LEE LI,
import statement: A statement that reads a module file and creates a module object.
FANEH s BUERF R BRI RIE A,

module object: A value created by an import statement that provides access to the values
defined in a module.

B R $ NEBBB—MME, o m R 3%RATE LB,

dot notation: The syntax for calling a function in another module by specifying the module
name followed by a dot (period) and the function name.

RS ARAE - DMESRNE-RRIEERN, REREEN—TR, hERERX
HNES, BINEHE.

composition: Using an expression as part of a larger expression, or a statement as part of a
larger statement.

ME IBRAXFEAFARANTRZ2 AN —ED, HEBREZHEHERE2TN—EBD,
flow of execution: The order statements run in.
BITRE | 2RETHERRE,

stack diagram: A graphical representation of a stack of functions, their variables, and the
values they refer to.

KA EBXRR. TERBTRESMBHAFIERT.

frame: A box in a stack diagram that represents a function call. It contains the local variables
and parameters of the function.

ER : APNGIE, RRT—REEAR. SRRBNER T ENHASE,
traceback: A list of the functions that are executing, printed when an exception occurs.

BER ¢ 3T E THRERBHSIR, SEFRENHIERMRM .

3.14 Exercises 4 7]

Exercise 1 %4 -] 1

Write a function named right_justify that takes a string named s as a parameter and prints
the string with enough leading spaces so that the last letter of the string is in column 70 of
the display.

B—"#right justifyIERE, HRASHEERHsHFRE, [FFFFHITH, BIEREE
B, LFFERE—INFRERT0I LR,

>>> right_justify('monty")
>>> right_justify('monty")

J E— o

Hint: Use string concatenation and repetition. Also, Python provides a built-in function called
len that returns the length of a string, so the value of len('monty") is 5.

IRR: FAFERHENESE XL, 24Pythoniz iRt T REMZFUlentEKE, &
LUREBI—MNZERF R K E, tbillen('monty)MEFE 257 o

Exercise 2 4.3 2

A function object is a value you can assign to a variable or pass as an argument. For
example, do_twice is a function that takes a function object as an argument and calls it
twice:

RET LB — DN A RIEA — DN aR e — N T 2B — DS L EME
#, tbin, do_twiceFlR— MNEEMEE I RUMSHEE, CHINER AR REK
AR

def do_twice(f):
()
()

Here’s an example that uses do_twice to call a function named print_spam twice.

THERZ 55— MMIF, XBRHTdo_twiceig H— %MW print_spamBIE £ A R,

def print_spam():
print('spam")
do_twice(print_spam)

1.Type this example into a script and test it.
B LEROFERBAARGX— T

2.Modify do_twice so that it takes two arguments, a function object and a value, and calls
the function twice, passing the value as an argument.

{Ee— T do_twice X MNEKEY, LW AN EFSEH, ERBAR, —1N2HE, B
At REE AR, FHEB Iﬁaﬁ%TMWﬁ%w%ﬁo

3.Copy the definition of print_twice from earlier in this chapter to your script.
Hprint_twice X MHBNE L EFNEURMWBHAE®, EXREF LTL—TEXNIFIE,

4.Use the modified version of do_twice to call print_twice twice, passing'spam' as an
argument.

F{E g BiX N do_twice3k i Bprint_twice)R, FAFHTHE Tspaml t5# it EE A 1
S,

5.Define a new function called do_four that takes a function object and a value and calls the
function four times, passing the value as a parameter. There should be only two statements
in the body of this function, not four.

— PR, ZBFuU#do_four, ERA—TEHEEGRM—NMEIEH LS, AH
21 XT%QT@IIT_EI/X, X MEAFiT B A REBN—IMERASH. I THPERRAE
BARTiERAHRG T, MAZE,

Solution

HEIR A

http://thinkpython2.com/code/do_four.py
http://thinkpython2.com/code/do_four.py

Exercise 3 4.5 =

Note: This exercise should be done using only the statements and other features we have
learned so far.

AR BN D oz RAaNBRIFE S T A EMIIEEE % 5.
1.Write a function that draws a grid like the following:

B—EH, MHOT

+ i +
| | |
| | |
| | |
| | |
temmaten=-t
| | |
| | |
| | |
| | |
+ i +

Hint: to print more than one value on a line, you can print a comma-
separated sequence of values:

IR BRI —17, JURESSR—TRBEE®RITT. MTFAT :
print('+', '-")
By default, print advances to the next line, but you can override that behavior and put a

space at the end, like this:

ANBERT, print2$TEIEIT—17, MRAUFHBEEINMT Y, EREHB — DR
FLALAT :

print('+', end=' ")
print('-")

The output of these statements is '+ -'.
FEREEHEERRE '+ -

A print statement with no argument ends the current line and goes to the next line.
BREZHEHprintiz AR BHERIITER, EF—17,

2.Write a function that draws a similar grid with four rows and four columns.

B— T8/ NS 4 B BFEF .

Solution #£/5 Credit: This exercise is based on an exercise in Oualline, Practical C
Programming, Third Edition, O’'Reilly Media, 1997.

btk 5] EFOualline®y+ (2EkCizE4%7) B=IR, O'Reillyikkt, 19974k

http://thinkpython2.com/code/grid.py
http://thinkpython2.com/code/grid.py

Chapter 4 Case study: interface design =%
3 1 RE#%it

This chapter presents a case study that demonstrates a process for designing functions that
work together.

FAESRHE—IERL, BTEROEEN %+ —EHETFRIR.

It introduces the turtle module, which allows you to create images using turtle graphics. The
turtle module is included in most Python installations, but if you are running Python using
PythonAnywhere, you won'’t be able to run the turtle examples (at least you couldn’t when |
wrote this).

AENB TN X MESR, ZRFRANGHETIERFF—LraR, & ei&EniE
AEB D BIPythonh &E BRI, A it NRIRELFEAPythnAnywhere, {RELTEE 171X
e #BlT (ELREXEREBMBIHRZERIT) o

(3&X : APRNEWET, REAALENPythonth Kit Az ETIE,)

If you have already installed Python on your computer, you should be able to run the
examples. Otherwise, now is a good time to install. | have posted instructions at
http://tinyurl.com/thinkpython2e. Code examples from this chapter are available from
http://thinkpython2.com/code/polygon.py.

INRIRB 2 %5 T PythonTEfRBY &, ix £, {RELBEE TXLERIF T, BREEMENE, XEL
REFAFEN TN, RELLBERNEHREMALET, KREFF.

AERDEOI TR & R T & T,

4.1 The turtle module & %, #&3:

To check whether you have the turtle module, open the Python interpreter and type:

BERSMBRARELRERT ZN L &8y, REITFFPythonfRgasRin AMITRE :

>>> import turtle
>>> import turtle
>>> hob turtle.Turtle()
>>> hob turtle.Turtle()

When you run this code, it should create a new window with small arrow that represents the
turtle. Close the window.

http://tinyurl.com/thinkpython2e
http://thinkpython2.com/code/polygon.py
http://tinyurl.com/thinkpython2e
http://thinkpython2.com/code/polygon.py

iz 7 LB FRIeHR, mZmeefE—NNED, s BNNFLARIENL 4. MRAW
EE T, EEOXERSE.

Create a file named mypolygon.py and type in the following code:

I — i mypolygon.pyI X, EEmH AWM THEA :

import turtle

bob = turtle.Turtle()
print(bob)
turtle.mainloop()

The turtle module (with a lowercase 't’) provides a function called Turtle(with an uppercase
'T’) that creates a Turtle object, which we assign to a variable named bob. Printing bob
displays something like:

BANNG @i GeER/NEW) RET — 1P Turtle CEEXEZARER, KNEE
E5 1) HEH, ITEBRAE— M Turtlext R, HNEEHKELbobEX N T2, FTH
— FbobFiEE 2 RN TFAE :

<turtle.Turtle object at Oxb7bfbf4c>

This means that bob refers to an object with type Turtle as defined in module turtle.
XL EBREDbObE 238 M T E3hturtle FFTE L Turtle % BI— 2t R,

mainloop tells the window to wait for the user to do something, although in this case there’s
not much for the user to do except close the window.

mainloopiX MR EEFBEOFM »RIMLSEE, AARARRLXNBERTH BHREX
MBEOmE T,
Once you create a Turtle, you can call a method to move it around the window. A method is

similar to a function, but it uses slightly different syntax. For example, to move the turtle
forward:

—BReIZET —Trutle, AR LLUARA—ER X MEBORR 5, HERKEE RE
W, Bz ERERMMAR—4, WAMRATLLEN & & ERTE

bob. fd(100)

The method, fd, is associated with the turtle object we’re calling bob. Calling a method is like
making a request: you are asking bob to move forward.

fdxN73E, Zturtle X NAUHEbobMI RATZ ZH. AR X NTAERMEEME — DK
—# : {REBiLbobMIFEI 7,

The argument of fd is a distance in pixels, so the actual size depends on your display.
fAdX N EENSHEBRBEES, U mRRIMESTIRE RBHERT

Other methods you can call on a Turtle are bk to move backward, It for left turn, and rt right
turn. The argument for It and rt is an angle in degrees.

Turtlext R A —LLHM AL, LLUIbkERER, tBXE#, tEhit, MrAREEAEM
S,

Also, each Turtle is holding a pen, which is either down or up; if the pen is down, the Turtle
leaves a trail when it moves. The methods pu and pd stand for “pen up” and “pen down”.

B4, BN Turtlef AT HEEL, ALUETHERE ; MREZETT, TurtlefZ a8
ERRETHDE T, BEFLENTTEEEN L L Epuflpd,

To draw a right angle, add these lines to the program (after creating bob and before calling
mainloop):

B—NEA, REETEXEANIAEFER (BAZELE—TbobHBELZAE T
mainloop)

bob. fd(100)
bob.1t(90)
bob. fd(100)

When you run this program, you should see bob move east and then north, leaving two line
segments behind.

TR NERF, (RELEEEEbobEM A BEI, FEMEBT T AREMEEENKET.
Now modify the program to draw a square. Don’t go on until you’ve got it working!

AEBR—TERF, EE—NMEAFW. INEFETAFNERMA R4S FENEY |

4.2 Simple repetition § 2HNEE

Chances are you wrote something like this:

R+ 2 EHINTHAR :

bob. fd(100)
bob.1t(90)
bob. fd(100)
bob.1t(90)
bob. fd(100)
bob.1t(90)
bob. fd(100)

We can do the same thing more concisely with a for statement. Add this example to
mypolygon.py and run it again:

BNKMAT, BB —"NMoriz AR EX PR ERE F 5, B TEAMCSRME
mypolygon pyHAREEIT—T :

for i in range(4):
print('Hello!")

You should see something like this:
MY EERXH#BME

Hello!
Hello!
Hello!
Hello!

This is the simplest use of the for statement; we will see more later. But that should be
enough to let you rewrite your square-drawing program. Don’t go on until you do.

xpiEforz MR EMW—ME R ; LERNEZEHES., T HRIXME LR %R
EKEM—TMRUEARLEREFT, T2ENAZK, TERIEAR, —EE4FH
KX NBHITEENAR

Here is a for statement that draws a square:

X Fte— M Hforiz AEBEIEAFEES :

for 1 in range(4):
bob.fd(100)
bob.1t(90)

The syntax of a for statement is similar to a function definition. It has a header that ends with
a colon and an indented body. The body can contain any number of statements.

foriz WA RIREREBE LA RBE. B—1KE, LHBHOLREERAES, A/FzxE—1T
4 A TEF K, BRI LULEERZHEE,

A for statement is also called a loop because the flow of execution runs through the body
and then loops back to the top. In this case, it runs the body four times.

foriz AtB R AUHKRTER, BAEITRIESEENTERE, ERFHEFH, BFRATT
PR,

This version is actually a little different from the previous square-drawing code because it
makes another turn after drawing the last side of the square. The extra turn takes more time,
but it simplifies the code if we do the same thing every time through the loop. This version
also has the effect of leaving the turtle back in the starting position, facing in the starting
direction.

FORNIEARLHRA L EMZRNPBERRTY, BAFEERTRE—TMUE, %

T—R#ER, ZHENIBOFTEEFRHANNN B, BELT TRBAIREFAITLH
it iz, I PRANRSEE—PHEARR @ i/ g aORER, SHAFIIRAME.

4.3 Exercises % 7]

The following is a series of exercises using TurtleWorld. They are meant to be fun, but they
have a point, too. While you are working on them, think about what the point is.

TEZE—RIEATurtleWorld®4 5. EBMERLELZARR, T B —L)4891F
o 1R L4 g Metx, —EBEEE R L) 4R,

The following sections have solutions to the exercises, so don’t look until you have finished
(or at least tried).

4 RHEEA —EAFNMRAREN, FIMREMTTBRERE, EMREXRX, T=
M7 EBEERMBITN,

1.Write a function called square that takes a parameter named t, which is a turtle. It should
use the turtle to draw a square.

BE— W square (2EFE : MREAFHER) , E—1MRWHSEH, X ME—
Murtle, X MurtleZi\E—NIEHF.

Write a function call that passes bob as an argument to square, and then run the program
again.

BE—1MEHEBUAA, 1BbobfE# S8 E# 4square, AREBEEITENRER,

2.Add another parameter, named length, to square. Modify the body so length of the sides is
length, and then modify the function call to provide a second argument. Run the program
again. Test your program with a range of values for length.

X Nsquare B IN—1N28, Willength GFEE : ¥E) . BREBUKSH—T, it

kK Elengthit a4 S M2 KE, REER—TARRHNNRS, BRHE—ITI DK
ENSZH., BRET—T, B—RITEBKE @K X — TRNERF.

3.Make a copy of square and change the name to polygon. Add another parameter named n
and modify the body so it draws an n-sided regular polygon. Hint: The exterior angles of an
n-sided regular polygon are 360/n degrees.

SH—TFsquareix MEEL, IBEFMKpolygon GFEE : RRAZuF) . zARM—
NS, AEEREEBUE, LR B—NEnMZ ., 127 EnZ il
M8 #360/nE,

4 .Write a function called circle that takes a turtle, t, and radius, r, as parameters and that
draws an approximate circle by calling polygon with an appropriate length and number of
sides. Test your function with a range of values of r.

AE—"MHHcircle GFEE : /) BIEE, HA—Nurtle £BIRt, UR—D¥£Fr,
Ex S8, BE—MELRE, @it A MApolygonE#skiatizm, MEZa9n kM,
AT BB+ K0 X — T RIEREL,

Hint: figure out the circumference of the circle and make sure that length * n =
circumference.

Ry BHENE K, AR kEU28809E G FTRRE K.

5.Make a more general version of circle called arc that takes an additional parameter angle,
which determines what fraction of a circle to draw. angle is in units of degrees, so when
angle=360, arc should draw a complete circle.

TEcircleE s E— Nl arcHIE S, TEcircleBE = ERIN—angle (3&E : AE)
TE, AXNAEAXRBEESAN—1PEMN. AEMEA, HangleFTI60E M
%, arcE# A HEE—1ERT,

4.4 Encapsulation £

The first exercise asks you to put your square-drawing code into a function definition and
then call the function, passing the turtle as a parameter. Here is a solution:

B—NEJIRIBEEAFELFRBELE—NHEE®, AR ARAIPEEN, #A—
Murtlext RIEASE, TEMRENHIFT :

def square(t):
for i in range(4):
t.fd(100)
t.1t(90)
square(bob)

The innermost statements, fd and It are indented twice to show that they are inside the for
loop, which is inside the function definition. The next line,square(bob), is flush with the left
margin, which indicates the end of both the for loop and the function definition.

AR ZEER, fdfitymHT MR, xPRE M0 ZlorfEsF B ERERK i ,
mforf& A ARG %3t T —R, #tiAforiz MO SERBNE L EPR, BETRIPBIT
square(bob), BSZM, EB#, X iBAforfE R FIEREE LEBLERT .

Inside the function, t refers to the same turtle bob, so t.1t(90) has the same effect as
bob.It(90). In that case, why not call the parameter bob? The idea is that t can be any turtle,
not just bob, so you could create a second turtle and pass it as an argument to square:

FERBUARER, tFAIERMRE/N S ebob, ALLittRA#HNTENNRELEERDTL

bobXRZEizN+E, AXFEBIBEASHMNETZEMbob, XE 44087 2F A4 ta
L}L}bﬁ{f%—/\d\%% i Zbob, PRLMRRLEEB IR » — ML &, BEFHL

squareiX MHEBE A LB -

alice = Turtle()
square(alice)

Wrapping a piece of code up in a function is called encapsulation. One of the benefits of
encapsulation is that it attaches a name to the code, which serves as a kind of
documentation. Another advantage is that if you reuse the code, it is more concise to call a
function twice than to copy and paste the body!

HHEHWFE A B —BRRDERER, WHHR, IFEE TR, MELRa8ET M4
¥, BEUXHEEANIIEE, BHFEET, 34— TNIFRER T REEER X BN DM
&, FRAREBMITLUT, ZHEFHEHREERTSESZT,

4.5 Generalization ;2 1t

The next step is to add a length parameter to square. Here is a solution:

T—F 2% squareEERIN— PN KESHT., TEZ2HH :

def square(t, length):
for 1 in range(4):
t.fd(length)
t.1t(90)
square(bob, 100)

Adding a parameter to a function is called generalization because it makes the function more
general: in the previous version, the square is always the same size; in this version it can be

any size.

BHEREBRINSE, UMMZiE, RAZTLLLERBMIIIEERT 2 : X AIMMRAR,
square X MEREBHFMNIEAF LR — TR ; EXNHRAERE, JLLBELZ K
TO

The next step is also a generalization. Instead of drawing squares, polygondraws regular
polygons with any number of sides. Here is a solution:

—Sthir Bz, XRMBANBEBEBIELAFET, BE—1NZ0F, ATLIEE R HH,
TEZEAH

def polygon(t, n, length):
angle = 360 / n
for i in range(n):
t.fd(length)
t.1lt(angle)
polygon(bob, 7, 70)

This example draws a 7-sided polygon with side length 70.
NMIFET — NN KEER A TOREN L2,

If you are using Python 2, the value of angle might be off because of integer division. A
simple solution is to compute angle = 360.0 / n. Because the numerator is a floating-point
number, the result is floating point.

INRARAPython289iE, AERBER %M $BMRE. # 2HIFRRTTERZA360.0
KRN A Z 360, XMEAZRBENTRERNEFR, 2RUE—TNERET.

When a function has more than a few numeric arguments, it is easy to forget what they are,
or what order they should be in. In that case it is often a good idea to include the names of
the parameters in the argument list:

L—PERBEEEL T HEESHN AR, REZTEILESHEMRZMH 2, HETEMA
BIRF, # TEEXMER, JUBEASENRFESRE—NEFSRIIRSP

polygon(bob, n=7, length=70)

These are called keyword arguments because they include the parameter names as
“keywords” (not to be confused with Python keywords like whileand def).

xEFIRUMM R SHIIR, BARNERASHNRFEYXREAZST#R, OCF
BXpx BRR4: A A ZEPythoniz EMIX AR | RERZEFEERE, BRX4H
‘Vﬂo)

This syntax makes the program more readable. It is also a reminder about how arguments
and parameters work: when you call a function, the arguments are assigned to the
parameters.

‘W%%%ﬁﬁ&ﬁ%ﬁ%ﬁkﬁ%omﬁﬁﬁiﬁiﬁﬁ%ﬁ§@%ﬁ%ﬁﬁzﬁ%
B etx, LR rRSBEEMS THASE,

4.6 Interface design 57 M i% it

The next step is to write circle, which takes a radius, r, as a parameter. Here is a simple
solution that uses polygon to draw a 50-sided polygon:

T—FMEEcircleX MR T, FEFEMFH—PSH. TER—NH 209446, £
polygonERBURE — M504 7, EEE—1E :

import math

def circle(t, r):
circumference = 2 * math.pi * r
n = 50
length = circumference / n
polygon(t, n, length)

The first line computes the circumference of a circle with radius r using the formula 2 1T r.
Since we use math.pi, we have to import math. By convention,import statements are usually
at the beginning of the script.

BTHETANE K, EA2FUABXREFRUYE, s MHERITHBERE, AL
B $ AmathiR 3, BEEEL S AN ZAREBZDHART X,

n is the number of line segments in our approximation of a circle, so length is the length of
each segment. Thus, polygon draws a 50-sides polygon that approximates a circle with
radius r.

neBiAXEE— M AFANXENE, Filllengthit@E—NEEHKE T, polygon
B— N0 % 9, JEEU—NFEE A IR,

One limitation of this solution is that n is a constant, which means that for very big circles,
the line segments are too long, and for small circles, we waste time drawing very small
segments. One solution would be to generalize the function by taking n as a parameter. This
would give the user (whoever calls circle) more control, but the interface would be less
clean.

ZMARN—TREREAZNZEY, AERES T EARTHE, KBREEMKS
T, MR, R TRZNEER, BRNAEMRZH—FT 7 BERE, LEREIENtE
B H—1S8, ZR5iLA 7 GAACIrcleRBBEMA) BEZRER, HLHEHFTA
B E, SR, FRERTIBLEET

The interface of a function is a summary of how it is used: what are the parameters? What
does the function do? And what is the return value? An interface is “clean” if it allows the
caller to do what they want without dealing with unnecessary details.

HHENFERE X TEeMEAIEN— DS : BEHLTE?HEL A LIIE? UK
REME R ? R AREERRFMARLKLE-—EXX R ENE T, IMEHAFEMR

= i 758,

In this example, r belongs in the interface because it specifies the circle to be drawn. n is
less appropriate because it pertains to the details of how the circle should be rendered.

AERFHOFH, raE&THREA, ByERCKAEMBERNAKN nABLEE
T, AHeRRARLEINFAERLH—DEB,

Rather than clutter up the interface, it is better to choose an appropriate value of n
depending on circumference:

SHIFREE£TR, BHFNEESENRIERKEBE L —MEEHNME

def circle(t, r):
circumference = 2 * math.pi * r
n = int(circumference / 3) + 1
length = circumference / n
polygon(t, n, length)

Now the number of segments is an integer near circumference/3, so the length of each
segment is approximately 3, which is small enough that the circles look good, but big
enough to be efficient, and acceptable for any size circle.

RELBIMEHMERRKN=02—7, HEERERNKEEE Y3, T PRNATLLER
BENY, EAERXNWEAEESAHT,

4.7 Refactoring E #4

When | wrote circle, | was able to reuse polygon because a many-sided polygon is a good
approximation of a circle. But arc is not as cooperative; we can’t use polygon or circle to
draw an arc.

L EBcirclexX MBI %, FHBEF B L a K polygon2RE A — 1N R4 % % %
FEMREEL BRMMALNEEINBRET BNTAERAZIEHEBRXKE— T
Gl

One alternative is to start with a copy of polygon and transform it into arc. The result might
look like this:

— NERNAEFEIEpolygonfEth—T, #HiMEM, LRABW TR :

def arc :
arc_length = * math.pi * r * angle /
n = int(arc_length / 3) +
step_length = arc_length / n
step_angle = angle / n
for i in range(n):

t.fd(step_length)

t.lt(step_angle)

The second half of this function looks like polygon, but we can’t reuse polygon without
changing the interface. We could generalize polygon to take an angle as a third argument,
but then polygon would no longer be an appropriate name! Instead, let’s call the more
general function polyline:

BT HBNEFEREENZ BT REN, BEoaBR—TREFTERENRZ LW
MR, BNEZSYHEH LENangle (AE) EAR=ANSH, BasUSAEHRT
AG&ET, EATNEM | Frllmici& e % K& polyline :

def polyline
for i in range(n):
t.fd(length)
t.1lt(angle)

Now we can rewrite polygon and arc to use polyline:

R A LLAZ B & polylinesREE % 34 2 polygonF [sllarc :

def polygon

angle = / n
polyline(t, n, length, angle)
def arc :
arc_length = * math.pi * r * angle /

n = int(arc_length / 3) +

step_length = arc_length / n
step_angle = float(angle) / n
polyline(t, n, step_length, step_angle)

Finally, we can rewrite circle to use arc:

=&, aise LA A MarcEEEcirclefIs2 a7 :

def circle
arc(t, r,)

This process—rearranging a program to improve interfaces and facilitate code re-use—is
called refactoring. In this case, we noticed that there was similar code in arc and polygon, so
we “factored it out” into polyline.

XA R, T RE&, BETRLSEMNA, XMUMEER. ER X NMIF
i, FneREEIRMarci% 4 FpolygonB IR 5, ARLAFATIEML 418R B 2 X
% polyline3& 52

If we had planned ahead, we might have written polyline first and avoided refactoring, but
often you don’t know enough at the beginning of a project to design all the interfaces. Once
you start coding, you understand the problem better. Sometimes refactoring is a sign that
you have learned something.

IMRILANFFRXATT A, HHMREEHLSEREE K polyline, REATHEMNT, A
AREFIE— PN RABZAEERA—E T BB LIBTRE. — B a5 7T, (ReiZEE
REPNNE T, AEENREREMRELZE THNABRT,

4.8 A development plan F7F % i+Xl

A development plan is a process for writing programs. The process we used in this case
study is “encapsulation and generalization”. The steps of this process are:

F i HRERFN—RIERE. BNAERANRE THE-Z21E1 RN, x—itiE
MEZ T :

1. Start by writing a small program with no function definitions.
FRE—DREHNINRER, SBEREE L,

1. Once you get the program working, identify a coherent piece of it, encapsulate the piece
in a function and give it a name.

—BEIFNREFERT, ME—TEANENX BB L INEE, HEMEK, Fo
%__FO

1. Generalize the function by adding appropriate parameters.
Wit B X PNEBIGINSHN A A RZ.

1. Repeat steps 1-3 until you have a set of working functions. Copy and paste working
code to avoid retyping (and re-debugging).

B581-3%5%, —BIRET —RIEIIENERE Y LE, BREEFMEHE, BEES
MASREENT,

1. Look for opportunities to improve the program by refactoring. For example, if you have
similar code in several places, consider factoring it into an appropriately general
function.

BERTER BT EM R KRBT EE, i, R (RE—LEHHFEFRTHEENAK
#, FLA LB X BB A A — D ER L

This process has some drawbacks—we will see alternatives later—but it can be useful if you
don’t know ahead of time how to divide the program into functions. This approach lets you
design as you go along.

ZMEABE—LERR, BNMELFEFI—LEERANAN, BxMEAZREMAN, LH
ik = AT ARTELELBEFDRE T EBRIE R,

4.9 docstring X ¥ F T H

A docstring is a string at the beginning of a function that explains the interface (“doc” is short
for “documentation”). Here is an example:

MXHEFRIERIE | TERBIF LA, ERRNENRERENFRE, docE X
documentation %5, THEE—MIF

def polyline(t, n, length, angle):

Draws n line segments with the given length and angle (in degrees) between them.
t is a turtle. o
for i in range(n):
t.fd(length)
t.1lt(angle)

By convention, all docstrings are triple-quoted strings, also known as multiline strings
because the triple quotes allow the string to span more than one line.

—RERT, MBEXEFREHRZ=E5IRFHH, BRUWESTFERSE, BH=EW
¥ 5| SRTAAZRNFHHREZSITH,

It is terse, but it contains the essential information someone would need to use this function.
It explains concisely what the function does (without getting into the details of how it does it).
It explains what effect each parameter has on the behavior of the function and what type
each parameter should be (if it is not obvious).

IEXFREE, BRI T —EXENER, ZEERMTERERERLEXE
2, SEERHERETRENAE (FRitwy, BN EN) . XEEET
B SEAHBIT AT A, UREENEE (—RETZEMSZ LB T BE

7)o

Writing this kind of documentation is an important part of interface design. A well-designed
interface should be simple to explain; if you have a hard time explaining one of your
functions, maybe the interface could be improved.

ExMi, xRXEFREILTEL, BEXEEN, &itBFHR HEZEES
a8 ; MRMPEREAE —NMF I T FERT, {El‘]’LAIi&(E/‘JXElxl+3\T¥EﬁH%g
R B,

4.10 Debugging 3 iX

An interface is like a contract between a function and a caller. The caller agrees to provide
certain parameters and the function agrees to do certain work.

— P REFE, MEESERHNARAEN—ITFHEA. AREFRETENSH, HHEK
RENES

For example, polyline requires four arguments: t has to be a Turtle; n has to be an integer;
length should be a positive number; and angle has to be a number, which is understood to
be in degrees.

Ba0, polylineiX N ERAEE, BB LS thhsig— N Turtle/h 34 ;n (32
) WA —Amﬁ,bmm(kﬁ)ﬁ%m—AE@ angle (AE) Wig— 1P UE
HENBAEE A,

These requirements are called preconditions because they are supposed to be true before
the function starts executing. Conversely, conditions at the end of the function are
postconditions. Postconditions include the intended effect of the function (like drawing line
segments) and any side effects (like moving the Turtle or making other changes).

XKUY TRIERMA] , RAEERBFRETZAMES AT 1T, HuERK
HEEMEBMZGN TEERG) . FEFRGSSEHHBMEBME (NELE) NEM
ER (R #E e ITHME)

Preconditions are the responsibility of the caller. If the caller violates a (properly
documented!) precondition and the function doesn’t work correctly, the bug is in the caller,
not the function.

RIERGZELARBAREN. IRARESET (ZaEN) mESRYE, REE
HAREE T, ZPbugiERGERBARE L, MAZRHEES.

If the preconditions are satisfied and the postconditions are not, the bug is in the function. If
your pre- and postconditions are clear, they can help with debugging.

IMRAERMFR T HRE, MEERMREHE, X TbugrtZ2EHHEIT , ATLUARIREY
R ERMGEFBW, <X BREFRE,

4.11 Glossary K iz%5%

method: A function that is associated with an object and called using dot notation.
FiE BN RSP RMEANEY, A&7 AR,
loop: A part of a program that can run repeatedly.

B&% : EFHRER 2 TH—8D,

encapsulation: The process of transforming a sequence of statements into a function
definition.

HE BRI RNEAEEE LR — MEREME R,

generalization: The process of replacing something unnecessarily specific (like a number)
with something appropriately general (like a variable or parameter).

it BE—ERRBNATAE ZBANATRE RiFNd iz, HNE— T EFE R
KT —TEEHESH.

keyword argument: An argument that includes the name of the parameter as a “keyword”.
KA B —MRERNE S, BEASBNEFEAREAEZSER,

interface: A description of how to use a function, including the name and descriptions of the
arguments and return value.

RESFE : A EA— MRS, ST RS, kst s SRR O @ B

refactoring: The process of modifying a working program to improve function interfaces and
other qualities of the code.

Ei d—RIFNEF#ITEN, N#RBXEREURRESKDEMTEHREN
ii%EEElo

development plan: A process for writing programs.
F &+ BERFERSIE,

docstring: A string that appears at the top of a function definition to document the function’s
interface.

MHEFRE — N EERELNRENFER S, #REENRERE.

precondition: A requirement that should be satisfied by the caller before a function starts.
RIESRM : TR E, ARE RS HENEKR,

postcondition: A requirement that should be satisfied by the function before it ends.

FERM ERBUERZE %% RN —EEK,

4.12 Exercises %4 7]

Exercise 1 %4 -] 1
Download the code in this chapter from here.

s FEX M ET RS,

1. Draw a stack diagram that shows the state of the program while executing circle(bob,
radius). You can do the arithmetic by hand or add print statements to the code.

B— A, Rz TEHCcircle(bob radius)s (ZR2FRIR A, RAIUFE—T, sEE
s E R MEIRS L.

1. The version of arc in Section 4.7 is not very accurate because the linear approximation
of the circle is always outside the true circle. As a result, the Turtle ends up a few pixels
away from the correct destination. My solution shows a way to reduce the effect of this
error. Read the code and see if it makes sense to you. If you draw a diagram, you might
see how it works.

4.7/ PRI R AR arcER B FHF ARG, R #ATE&MEI LB ERER,
SRUEBNL & L RIPREMBUERE —LERER. HEIEHLET —MEEx Mz =2
BERAE. Wix— T8, EMRETEER, MRMFE—T B, AR RsE
BELTITHENT,

Figure 4.1: Turtle flowers.

Exercise 2 45 2
Write an appropriately general set of functions that can draw flowers as in Figure 4.1.
BE—RIMNSENEHAS, BHEL1RATRHERRE,

Solution #4531 : http://thinkpython2.com/code/flower.py, also requires [Eit T E :
http://thinkpython2.com/code/polygon.py.

http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/flower.py
http://thinkpython2.com/code/polygon.py

Figure 4.2: Turtle pies.

Exercise 3 4.°]3

Write an appropriately general set of functions that can draw shapes as in Figure 4.2.
BE-RINEEHNEHNAE, BHE42FIRHIIR,

Solution #4l : http://thinkpython2.com/code/pie.py.

Exercise 4 4] 4

The letters of the alphabet can be constructed from a moderate number of basic elements,
like vertical and horizontal lines and a few curves. Design an alphabet that can be drawn
with a minimal number of basic elements and then write functions that draw the letters.

FRRAFHNFRLALUA-—ERENERTREHNE, LT EHEKERNLESE, XU
R—Ei%, &t — T eARNMNENERATRELEEXNFER, RAEEITHBKRET
Hi K,

You should write one function for each letter, with names draw_a, draw_b, etc., and put your

functions in a file named letters.py. You can download a “turtle typewriter” from this link to
help you test your code.

MY AE—NFERE—EN, LFritbildraw_a,draw_b%%E, ARIBIREEK @Uiﬁl
E|—/ i fletters.pyBI X AR, ARATLAM DNEE$E T8 — %é@ﬂ%m%*“{’]’#) —
K3,

You can get a solution from here; it also requires this.

R ASE X BB R 2 TR XL,

Exercise 5 4 °]5

Read about spirals at Wiki; then write a program that draws an Archimedian spiral (or one of
the other kinds). Solution

http://thinkpython2.com/code/pie.py
http://thinkpython2.com/code/typewriter.py
http://thinkpython2.com/code/typewriter.py
http://thinkpython2.com/code/letters.py
http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/letters.py
http://thinkpython2.com/code/polygon.py
http://en.wikipedia.org/wiki/Spiral
http://thinkpython2.com/code/spiral.py

Think Python 2e A 3ZhR

EWkiERE—TRELANBEXAT,REENEFREMERTSML (HBL&HH—
M) o #PB

Chapter 4 Case study: interface design £#I%# 5 : X H % it

79

http://en.wikipedia.org/wiki/Spiral
http://thinkpython2.com/code/spiral.py

Chapter 5 Conditionals and recursion 541§ 2%

The main topic of this chapter is the if statement, which executes different code depending
on the state of the program. But first | want to introduce two new operators: floor division and
modulus.

AENERZIHER, MEFMEHE, SxREFHNTRRSEMTIRNNE, BEEL
HEN B AT E BEF : floor (MARERZE, SF/NEUL) Mmodulus (KRR, EXRE)

5.1 Floor division and modulus iR pRF0 k1

The floor division operator, //, divides two numbers and rounds down to an integer. For
example, suppose the run time of a movie is 105 minutes. You might want to know how long
that is in hours. Conventional division returns a floating-point number:

floorfRi%, HXE—FE2MRRE, BT, T34E7T, aBEFE2a AR

A :l, SE%RETRE, iR ESEz ELRNKAES, ROZEE, Flm, MA
— BB b, Bt] KER10590 47, RAIRERERNERX e H/N R ERE K, F4M
pRiZEEINT, KIREI—NMZRNE :

>>> minutes
>>> minutes
>>> minutes
>>> minutes

NN

But we don’t normally write hours with decimal points. Floor division returns the integer
number of hours, dropping the fraction part:

it — Mg NAERNEBV N B, HRPRE RO ZER /Nt 8, SFie/ NI -

>>> minutes
>>> minutes
>>> hours = minutes //
>>> hours = minutes //
>>> hours
>>> hours

To get the remainder, you could subtract off one hour in minutes:

BENESFRBONKE, TUBADHBAETZL—DNe, RERTHDHEHME

minutes - hours * 60
minutes - hours * 60

>>> remainder
>>> remainder
>>> remainder
>>> remainder
45

An alternative is to use the modulus operator, %, which divides two numbers and returns the
remainder.

BH—DAEMZREAREZRRT, BRS%UET, REZEUZRRY, €A
NERRRA R IR EIRE,

minutes % 60
minutes % 60

>>> remainder
>>> remainder
>>> remainder
>>> remainder
45

The modulus operator is more useful than it seems. For example, you can check whether
one number is divisible by another—if x % y is zero, then x is divisible by y.

K&z ERFER Ak antt, EEandRer LAR KIS b — N ERBET #E 5 — DR RR
— Lt INx%yINRETFOT, IERKEXEERYERT o

Also, you can extract the right-most digit or digits from a number. For example, x % 10 yields
the right-most digit of x (in base 10). Similarly x % 100yields the last two digits.

BAMRET UM — PN ERERA NN — AL AT, T, x%10MREHxzA %
H7, RN IHF. FEEEE, Ax%100G5EINMEEaEAMUEF T,

If you are using Python 2, division works differently. The division operator, /, performs floor
division if both operands are integers, and floating-point division if either operand is a float.

?D%WﬁﬁPythonZE’\Ji@, PROERA—HM, EaQEREFNE, BHabRiEz B/
#HITHIRFRE, MAYRBEE—NRZREAZTHTERRE,

5.2 Boolean expressions 7 R 3Rk I\

A boolean expression is an expression that is either true or false. The following examples
use the operator ==, which compares two operands and produces True if they are equal and
False otherwise:

ALAREAAEB—MIEMEIEMREN, REXLENME, true (B) si&false (R) .
TEMAFEHETNES2ER, MBS anNaeSHEE, BEHME
True, T1EZHEFLZFalse :

>>> 5 == 5

>>> 5 == §
True

>>> 5 == 6
>>> 5 == 6
False

True and False are special values that belong to the type bool; they are not strings:

TruefFalse#P 24555001, BFboolfm 2 28 ; B mAEFERE .

>>> type(True)
>>> type(True)
<class 'bool'>
>>> type(False)
>>> type(False)
<class 'bool'>

The == operator is one of the relational operators; the others are:

MESZBHFRRRAZEFN—M, HEXRzERFOTF :

X I=y # x is not equal to y —EBE

X >y # x is greater than vy EIEZED

X >y # x is greater than vy EIEZEDN

X <y # x is less than y FIEEEN

X >=y # x is greater than or equal to y KFZHFTF

X >=y # x is greater than or equal to y KFZHFTF

X <=y # x is less than or equal to y INFEF

Although these operations are probably familiar to you, the Python symbols are different
from the mathematical symbols. A common error is to use a single equal sign (=) instead of
a double equal sign (==). Remember that = is an assignment operator and == is a relational
operator. There is no such thing as =< or =>.

Z AR HRHMRARERAE T, B—EEFEPythonEENAFSHHELNFTSE—
EX 5, BLHERMEREETFS=INES== —EBLF2EFS=E—TEazg
fF, MES=——BXRzE8F., sAEBITRMRRTETFHENTETHESFSHEK
FEHEH/NTFESHEE, 1FHFR.

5.3 Logical operators % & iz E&F

There are three logical operators: and, or, and not. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 is true only if x
is greater than 0 and less than 10.

2 ERFE=M: H, UK, x=MHzEFNERNEZTEARRESRS, tiNx>08
x<10, R HXTEORIM0Z I eH R A B

n%2 == 0 or n%3 == 0 is true if either or both of the conditions is true, that is, if the number
is divisible by 2 or 3.

n%2==03 n%3 ==0, RBFRHE—PRIMEE, FE X D LIR2HIERELIT
I

Finally, the not operator negates a boolean expression, so not (x > y) is true if x > y is false,
that is, if x is less than or equal to y.

REAZXDIEER, B4ximrRa®lml, I (oy) AR, BaxcyREBM, SREX
NFETFY,

Strictly speaking, the operands of the logical operators should be boolean expressions, but
Python is not very strict. Any nonzero number is interpreted as True:

EIEEH, THEERFNEENREZMFEMAREAR, TgPythonFi AR =&, 1
AEE T EMRWANRE :

>>> 42 and True
>>> 42 and True
True

This flexibility can be useful, but there are some subtleties to it that might be confusing. You
might want to avoid it (unless you know what you are doing).

BMREERFHNER, TaAENBRTHERZEIRESR., EURREFREXHAE, KRIE
RIBRAA T,

5.4 Conditional execution 41T

In order to write useful programs, we almost always need the ability to check conditions and
change the behavior of the program accordingly.Conditional statements give us this ability.
The simplest form is the if statement:

ERANREFUAERREL SHINNIIE, REFTAREELEFEELNITY, G
BARLL A 11889 2 X MHINT, &RE EHMZIHEET

if x > 0:
print('x is positive')

The boolean expression after if is called the condition. If it is true, the indented statement
runs. If not, nothing happens.

fEEAIA R R AMAUMARG., MRFEAHE, BEHHEEMETT. NRFES
R, FAAEIT,

if statements have the same structure as function definitions: a header followed by an
indented body. Statements like this are called compound statements.

ifiZ A 5RME LS HER—# : — L5, FEREL#I:EE, XHENEEWUHRE
I:l‘L\:r/D_Jo

There is no limit on the number of statements that can appear in the body, but there has to
be at least one. Occasionally, it is useful to have a body with no statements (usually as a
place keeper for code you haven’t written yet). In that case, you can use the pass statement,
which does nothing.

EqhzaPzafRNNzaBERTREN, BEEVEE—T. ANEREBE—1TiE
BAEATREENIER, INZEEEAREL AT ZMIERT, (RRUA LI Apassiz
], mEsth TR,

if x <
pass # TODO: need to handle negative values!

5.5 Alternative execution 3t %317

A second form of the if statement is “alternative execution”, in which there are two
possibilities and the condition determines which one runs. The syntax looks like this:

ifZANE—MEAME TRE3EHIT], IMERTREEAMMLEEEE, REBEFRHEXE
T AT — 1 ZBRMM TR :

if x % 2 ==

print('x is even')
else:

print('x is odd")

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program
displays an appropriate message. If the condition is false, the second set of statements runs.
Since the condition must be true or false, exactly one of the alternatives will run. The
alternatives are called branches, because they are branches in the flow of execution.

WRXBRLL2EIREL A0, xFE2—MET, %%F“)ﬁ/‘\aj_‘ﬁﬁﬂ’ﬂﬁﬁo IR FHETRK
3, Bz {TE-FKE0, xBREIEEIR, REA Dk, xtigthul M4
X1, RAEETHREL=E£T7TFARNS X,

5.6 Chained conditionals 4 =514

Sometimes there are more than two possibilities and we need more than two branches. One
way to express a computation like that is a chained conditional:

AENHBNEENATERERREAM, FERZHNDZ, X &R LUEAE R RS

,

if x < y:

print('x is less than y')
elif x > y:

print('x is greater than y')
else:

print('x and y are equal')

elif is an abbreviation of “else if’. Again, exactly one branch will run. There is no limit on the
number of elif statements. If there is an else clause, it has to be at the end, but there doesn’t
have to be one.

elif@ Telseifl M%EE, XEHEEREEFE—NDXWEAEWiE 1T, elifizAHNBER
TIRFIH, TNRFBelseizAME, X Pelseiz A b FiMEIBNRZEHKE, Fitelseid
BHAZHRBEN,

if choice == 'a':
draw_a()

elif choice == 'b':
draw_b()

elif choice == 'c':
draw_c()

Each condition is checked in order. If the first is false, the next is checked, and so on. If one
of them is true, the corresponding branch runs and the statement ends. Even if more than
one condition is true, only the first true branch runs.

B—IREBIEREE S, IRB—TER, T—TREBRE, KILEHE, ORE
—MHET, HANDXGEARETT, XERGHIEEAMEBLERT, MIRE—T
U ERNZRHERE, RBEFLEEARHENZE/R 1 22X E0RET.

5.7 Nested conditionals ExE 514

One conditional can also be nested within another. We could have written the example in the
previous section like this:

— D RAEHMT R LRER 5 —DREHIER, E— 5 B0 FILIRERAT ¢

if x == y:
print('x and y are equal')
else:
if x < y:
print('x is less than y')
else:
print('x is greater than y')

The outer conditional contains two branches. The first branch contains a simple statement.
The second branch contains another if statement, which has two branches of its own. Those
two branches are both simple statements, although they could have been conditional
statements as well.

AMURGHIESANDIZ. B—TOIXZRE—THENEE., BIMDPXEIT 5
A—ERGHIN, I PAMREHMBEATDZ. TATDZEZ H LHEE, MY
LB th AT LAgk 5 SR U BT 3 B,

Although the indentation of the statements makes the structure apparent,nested conditionals
become difficult to read very quickly. It is a good idea to avoid them when you can.

2REBANGE#RERNDEHEBLLFMA L, ERENZH R HERERR R
B, FrRAZ U RINR AT LIRYE, RER R RIRERIKMA IR,

Logical operators often provide a way to simplify nested conditional statements. For
example, we can rewrite the following code using a single conditional:

17 35 BRA R §IEBRERGHMEER, LIITEX M ATERERE 5 28
iR A

if 0 < x:
if x < 10:
print('x is a positive single-digit number.')

The print statement runs only if we make it past both conditionals, so we can get the same
effect with the and operator:

LEHFIFrR, READNREEHRE T FRiE1Tprintiza, FRURLAZ Hi2 BRIE L 3
B A FIRREN A :

if 0@ < x and x < 10:
print('x is a positive single-digit number."')

For this kind of condition, Python provides a more concise option:

XFEMET, PythoniRETEHsHREFE

if < X <
print('x is a positive single-digit number.')

(1#E3F : Pythonlx MR EE iz wiBit TCHIC++, xEHMABR—EENERESRE
PythonEX X C++3E L AR E TR EMBEN 2R,)

5.8 Recursion # J3iz &

It is legal for one function to call another; it is also legal for a function to call itself. It may not
be obvious why that is a good thing, but it turns out to be one of the most magical things a
program can do. For example, look at the following function:

=

—PNERBALUERARZ —TEY; HECRARBEChERAN, ZpER)E, BEREFK
HENIEERZ —, AR NFER G4, BLKEETEI MRS B

def countdown
if n <=
print('Blastoff!"')
else:
print(n)
countdown(n-1)

If nis O or negative, it outputs the word, “Blastoff!” Otherwise, it outputs nand then calls a
function named countdown—itself—passing n-1 as an argument. What happens if we call
this function like this?

MRnHOHE 7 B, EFEL#H Blastoff | 1 ., HMIFERT, BFESERAEEFRETT,
DEBSEnAETIASH, NRETEXHAAXIPNHBEELHE?

>>> countdown(3)
>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it outputs the
value 3, and then calls itself... The execution of countdown begins with n=2, and since n is
greater than 0, it outputs the value 2, and then calls itself... The execution of countdown
begins with n=1, and since n is greater than 0, it outputs the value 1, and then calls itself...
The execution of countdown begins with n=0, and since n is not greater than 0, it outputs the
word, “Blastoff!” and then returns. The countdown that got n=1 returns. The countdown that
got n=2 returns. The countdown that got n=3 returns. And then you’re back in __main__. So,
the total output looks like this:

FoasHERESHnES, KT0, HtinKE3, RERAMAES, FAn-1mZ2FA15
i&o o o

BETRMNERHBSHENE2, KF0, #HHnt@E2, REAFEE, An-1tm21EAS5E. . .
BETEEHSHENZ1, KF0, H#link@E1, AEARES, An1tBm20FE4SH. .
REXREBSHNZ0, FF07T, #H Blastoff | 1 , ARIRE, n=1898t{ZHcountdown
HHITET, RE, n=2898t{ZMcountdowntE #4752 T, RE, n=389a{EFcountdowntt
WATET, RE, GFEXE: XIHE—EEIETEHEFFERTET, BRONE—D
BRHHBAAE, xBERERFNZAEREAANIREENAEY, —EE2FIHFEF
mT,) ETERMALEBEERE main_ BEET., AAULLRMGHEESIN TR

Blastoff!

A function that calls itself is recursive; the process of executing it is called recursion.
ARBENEERER 28 HITXMHE T ERl =iz H,

As another example, we can write a function that prints a string n times.

BMBE—1AprintiE— 1M FR/F &8s 8 mnRBIFIF -

def print_n
if n <=
return
print(s)
print_n(s, n-1)
s="Python is good"
n=
print_n(s, n)

If n <= 0 the return statement exits the function. The flow of execution immediately returns to
the caller, and the remaining lines of the function don’t run.

MERNNFETFOT, RELEAreturnib S & IEEREIM i 1T, i TRIEILENR B8 F
, BHEAKZ TR ABELRE T,

The rest of the function is similar to countdown: it displays s and then calls itself to display s
n-1 additional times. So the number of lines of outputis 1 + (n - 1), which adds up to n.

iﬁlﬁl%uﬁﬁﬂ’]ﬁﬂﬁé%ﬁ% print—TFs, AEARBE, An- 1Sk sz
17, XIHEMHENts#HITTn- 1R E R Fﬁuiuﬂjﬁ’]ﬁ@EH (n-1) , &&—HEBNT
it

For simple examples like this, it is probably easier to use a for loop. But we will see
examples later that are hard to write with a for loop and easy to write with recursion, so it is
good to start early.

FExME£06F, ErrLRAforfErE G 2. TEEHBNMBEE —LEMforfEr T
AFENFIFT, ZLEFRTETARBEY 2, Fﬁuﬁ”ﬁ 3T #BEEFRE,

5.9 Stack diagrams for recursive functions % J3

A

In Section 3.9, we used a stack diagram to represent the state of a program during a
function call. The same kind of diagram can help interpret a recursive function.

EABNEZERZNLY, BNMARARRLEREBARIBEPEFNRE, AERXMA
B, MEBTAARETRS FHHEI1TEIE
Every time a function gets called, Python creates a frame to contain the function’s local
variables and parameters. For a recursive function, there might be more than one frame on

the stack at the same time. Figure 5.1 shows a stack diagram for countdown called with n =
3.

BRAE—TEHEHMARNN{E, PythonBlR |2 —MERKE S X NERBNEER T EH
MRS, T K, TRIERFRNEKS 2 RIESR,

5.1 7 BiE A5 coundown B EFEn=38 s &I 4% 18 o

Mmain
countdawn n—3
cauntdawn n—s=2
cauntdawn n—s-=1
cauntdawn n—s=0
Figure 5.1: Stack diagram.

As usual, the top of the stack is the frame for __main__. It is empty because we did not
create any variables in __main___ or pass any arguments to it.

KREANFF LEKAZEHE _ main_, IBFHHEZEHN, BABMNEEEEIHLER
B EFEARTHAE,
The four countdown frames have different values for the parameter n. The bottom of the

stack, where n=0, is called the base case. It does not make a recursive call, so there are no
more frames.

9N coundown FHERFE XS EnN &R AR, T4 B EIHEn=009st &, HalEAES
B, XeHMERB#1TH AR, BREESERT,

As an exercise, draw a stack diagram for print_n called with s = 'Hello' and n=2. Then write a
function called do_n that takes a function object and a number, n, as arguments, and that
calls the given function n times.

TE% 33—, B—"Dprint_nEHHHHAE, itsHFREE THellod , nk2, AEF—
HE, BFAHdo n, BFH—MEESRN—IMEENMEY LS, 28— nVF7?AK§i
KA AX N

5.10 Infinite recursion J; % i% 3

If a recursion never reaches a base case, it goes on making recursive calls forever, and the
program never terminates. This is known as infinite recursion, and it is generally not a good
idea. Here is a minimal program with an infinite recursion:

MR—D 2 A —EBMAER A EERY, BT #TEIGAR, BEFERIK
ZARRIET, ZPMUEE % E, —RRBFIZ2THERER. TERE—TES & E1
B 5 £ BB F -

def recurse():
recurse()

In most programming environments, a program with infinite recursion does not really run
forever. Python reports an error message when the maximum recursion depth is reached:

EXLZEWFF % S IET, }%?¥Jﬂﬂg$zfa¢$x,\ﬂﬁ it iz 1T P&, Python&STEEE A
Blftri# amRKERE NME2ER -

File "<stdin>", line
File "<stdin>", line
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse
RuntimeError: Maximum recursion depth exceeded

2, 1n recurse
2, 1n recurse
2
2

This traceback is a little bigger than the one we saw in the previous chapter. When the error
occurs, there are 1000 recurse frames on the stack!

EPMEBESBNZAEIN KRS, a5z HARNHE, KPEE2E10002 # 31E
2T

If you write encounter an infinite recursion by accident, review your function to confirm that
there is a base case that does not make a recursive call. And if there is a base case, check
whether you are guaranteed to reach it.

MRIFBHABHRE—NT 5 % 20K ", FiFk s —TRORE, —EZHREE—ITE
BERERFIER A, MRFETEESRYE, 2T - EZRREFEZKIL

5.11 Keyboard input 4 & # A

The programs we have written so far accept no input from the user. They just do the same
thing every time.

BRI b B NRRF R EEEERE A 7HaA. IBERFFREBEM—LREHN
%lﬁo

Python provides a built-in function called input that stops the program and waits for the user
to type something. When the user presses Return or Enter, the program resumes and input
returns what the user typed as a string. In Python 2, the same function is called raw_input.

PythoniR#t T NEBEM—DEE, ZMllinput, XPNERBSEIEEFE1T, FEHE 2 EHA
—LRNE, B PR TESCHEEterOl £42, BFEFMIKE 1T, inputlREFRIEHE P #HAH
NAVEAHFRF&ERMO, EPython2E @, RHEMEKEBBZFAR, Agraw_input,

>>> text = input()

>>> text = input()

What are you waiting for?
>>> text

>>> text

What are you waiting for?

Before getting input from the user, it is a good idea to print a prompt telling the user what to
type. input can take a prompt as an argument:

TR PFMARBZE, REFLTERE, REFAFFEHATLAR, inputEEEE
BIPRTABEHSH

>>> name input('wWhat...is your name?\n')
>>> name = input('What...is your name?\n")
What...is your name?

Arthur, King of the Britons!

>>> name

>>> name

Arthur, King of the Britons!

The sequence \n at the end of the prompt represents a newline, which is a special character
that causes a line break. That’s why the user’s input appears below the prompt.

RAHNBRENINRTIEFE—1T, X2—NMFHRHNFER, RT#%T. BABTHRITF
7, TR i ARBE TIRIABETEET,

If you expect the user to type an integer, you can try to convert the return value to int:

INRARIBER PR A— PN ER T &, JLUEREINEFH#4#5—T

>>> prompt 'What...is the airspeed velocity of an unladen swallow?\n'
>>> prompt 'What...is the airspeed velocity of an unladen swallow?\n'
>>> speed = input(prompt)

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

>>> int(speed)
>>> int(speed)

But if the user types something other than a string of digits, you get an error:
INRA P ANZEMBRART, MAR—HHFE, MITE—THET -

>>> speed = input(prompt)

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed) ValueError: invalid literal for int() with base 10
>>> int(speed) ValueError: invalid literal for int() with base 10

We will see how to handle this kind of error later.

MERNBREFWNME &2t X M2,

5.12 Debugging A X

When a syntax or runtime error occurs, the error message contains a lot of information, but it
can be overwhelming. The most useful parts are usually:

HiERERNEEITHRHANE, S2EEREEREIZAMANER, TIEREX
X, AEx, EANERTEX A £

¢ What kind of error it was, and
HRNEREMFL, UK

e Where it occurred.

iR AETERE,

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can
be tricky because spaces and tabs are invisible and we are used to ignoring them.

>>> X
>>> X
>>> y
>>> y
File "<stdin>", line
y =
N
IndentationError: unexpected indent

In this example, the problem is that the second line is indented by one space. But the error
message points to y, which is misleading. In general, error messages indicate where the
problem was discovered, but the actual error might be earlier in the code, sometimes on a

previous line.

ZANPIFEE, HixPMARB T LA—NERREH# T BxMErEREAYH,
BMERESFT. —RBERT, #2ERMEIRTHL A ENME, BEEEZH
BERELAIE BRI AEIERN, M EEER—1T.

The same is true of runtime errors. Suppose you are trying to compute a signal-to-noise ratio

SNR; = 10]Dg]['J(P:;fgnuffpfmf.\'e)

might write something like this:

in decibels. The formula is In Python, you

FR#IERE L EEEITHRHBERT. RilRXERAD N 03K+ BERL,

AR SNRdb = 10]Dg][J(P.s'fgf:ruffpf:raf.\'e)

f£Python, {RATEER TEXH4E :

import math

signal_power = 9

noise_power = 10

ratio = signal_power // noise_power

decibels = 10 * math.logl0(ratio) print(decibels)

When you run this program, you get an exception:
EITEXNER, MASFIMTERZER -

Traceback (most recent call last):
File "snr.py", line 5, in ?
decibels = 10 * math.logl0(ratio)
ValueError: math domain error

The error message indicates line 5, but there is nothing wrong with that line. To find the real
error, it might be useful to print the value of ratio, which turns out to be 0. The problem is in
line 4, which uses floor division instead of floating-point division.

XN ERRTBRIT, BR—TEmLiFgEs. EXRIEENEZ, AEHRE—
TratoMERE—T, #RLAR0T. Wr MR FEBERMET, RizRAFRRE 4R
ZH T =AML, FRTMIRERE, ¥ $HEIH 2,

You should take the time to read error messages carefully, but don’t assume that everything

they say is correct.

FTLMR B et B Fme izt i2 G R, BERELZMAAHEERHNAREZ
IO R

5.13 Glossary K iz%%

floor division: An operator, denoted //, that divides two numbers and rounds down (toward
zero) to an integer.

WiRbRE - —MiEER, WEARML, EADEERR, SF/NMNUL, R HEW.

modulus operator: An operator, denoted with a percent sign (%), that works on integers and
returns the remainder when one number is divided by another.

KEDR : —MzER, B25%, HEEEFR, READMBFHRIRNRE.
boolean expression: An expression whose value is either True or False.
KRR - —ME oy EFERIIFRA I

relational operator: One of the operators that compares its operands: ==, I=, >, <, >=, and

<=,

KREERF bz ERIXRNE ER ==8%F, =7%F, >KTF, <N F, >=KFEFTF,
URKk<=NFEFT,

logical operator: One of the operators that combines boolean expressions: and, or, and not.
BB BAARAAABERNVEESR : andB, orsk, LLKknotik,

conditional statement: A statement that controls the flow of execution depending on some
condition.

Fiza 2R TRENEE, RETRAFGETREDEETT.

condition: The boolean expression in a conditional statement that determines which branch
runs.

& FEEAFmEAMNA AR, RIBEERFRAEETI .

compound statement: A statement that consists of a header and a body. The header ends
with a colon (:). The body is indented relative to the header.

86iE0 @5%BE KN —Ez048E, LBEEESHMLERE, E@AFETF %
ERER — R4 #

branch: One of the alternative sequences of statements in a conditional statement.

DX FEERDEP L& —RIER,

chained conditional: A conditional statement with a series of alternative branches.
EARY - — R DT MBS EEA,

nested conditional: A conditional statement that appears in one of the branches of another
conditional statement.

BRERM : KMz 2 P e s 8 2REASKMEFIER.

return statement: A statement that causes a function to end immediately and return to the
caller.

RELER - —MIFIARYE R, TIEER AL HRTRE, ILEIBRERIREUARE.

recursion: The process of calling the function that is currently executing.
#3 KBt BE#HTABNEE

base case: A conditional branch in a recursive function that does not make a recursive call.
BEHERG 3 EBP IR, BExaklb# AR,

infinite recursion: A recursion that doesn’t have a base case, or never reaches it. Eventually,
an infinite recursion causes a runtime error.

Tr#a — R EEERERE A, NBRKETELABEESEN®)T, —BRES %
3 B REIHEIE 1T4 %,

5.14 Exercises % 7]

Exercise 1 4 -] 1

The time module provides a function, also named time, that returns the current Greenwich
Mean Time in “the epoch”, which is an arbitrary time used as a reference point. On UNIX
systems, the epoch is 1 January 1970.

timetR 3Rt T — D EFE#UHKtimeEKE, RO HFSHECE @B @B, 2
UE—1Tut i RIEA RS E B, FEUnKRAR, o BBHNSZE/Z1970F1815,

(G2EE : B2 RA YA 8 HExTF1970.1.1 00:00:00A# i+ ERN R EZE, st
BRE—M,)

>>> import time
>>> import time
>>> time.time() 1437746094 .5735958
>>> time.time() 1437746094 .5735958

Write a script that reads the current time and converts it to a time of day in hours, minutes,
and seconds, plus the number of days since the epoch.

E—THER, EREReE, B Deda s eAR A 460, FIREBD 44 5/ ad -0 -
MBI, N ESE e a LSKRBIREL,

Exercise 2 #4.-]2

Fermat’s Last Theorem says that there are no positive integers a, b, and ¢ such that

a” + b" ="

for any values of n greater than 2.

 BREEAR Y, a by oo nIIAHIEEY, EnKT2HER, TEHHFAXRTK

ot

=

a” + b" ="

1. Write a function named check_fermat that takes four parameters—a, b, ¢ and n—and
checks to see if Fermat’s theorem holds. If n is greater than 2 and

BE—1EE, ®&Mcheck fermat, X MNHREENNMASE 1 a. b, cllkn, ¥#E—TF
% L KEEEENI, EEENKT2HE R T FIER

a” + b" ="

=AML,

1. The program should print, “Holy smokes, Fermat was wrong!” Otherwise the program
should print, “No, that doesn’t work.”

ERFEF#H FHoly smokes, Fermat was wrong!d & [No, that doesn’t work.J

1. Write a function that prompts the user to input values for a, b, ¢ and n, converts them to
integers, and uses check_fermat to check whether they violate Fermat’s theorem.

BE—PHBRIRER »E4 Aa. b, clniE, AEERHAEZRABETE, BEEH
check_fermatix NMRE K4S EMNEETZE T & o KEHE,

Exercise 3 4] 3

If you are given three sticks, you may or may not be able to arrange them in a triangle. For
example, if one of the sticks is 12 inches long and the other two are one inch long, you will
not be able to get the short sticks to meet in the middle. For any three lengths, there is a
simple test to see if it is possible to form a triangle:

WHIR=ZABARIE, REEARBEIEENBR=ATIE ? tbil— M AREZ12T K, ZH/ABDZ1
BTk, XABEEFRYS K, TEBHR=AFT

/

(GEEF 1ET=254FEXK) vTFEEN=NKE, B—1NEENAEELNENEDS
HR=A% :

If any of the three lengths is greater than the sum of the other two, then you cannot form a
triangle. Otherwise, you can. (If the sum of two lengths equals the third, they form what is
called a “degenerate” triangle.)

RE=ANAREBEFEEE—THKERTEMADHH, MHAIR=ZAT T, DHARER
— PN REBNTRZMFTEHN=AT. (MRAYKFTHE=Y, WRBELEMNFTE
FRIE=ATI T, #EF : EHELXTMNT RET A7)

1. Write a function named is_triangle that takes three integers as arguments, and that
prints either “Yes” or “No”, depending on whether you can or cannot form a triangle from
sticks with the given lengths.

BE—/Puis_trianglel IR, A=NMBE T EHLFS
=AM kY E TYesl 23 Nod .

#, HWERERm AR ERESH

©

1. Write a function that prompts the user to input three stick lengths, converts them to
integers, and uses is_triangle to check whether sticks with the given lengths can form a
triangle.

PMEHREBRIRTITAH P, EMAZSERE, Bk EZ, His_triangleEREk4
m LA ERENLRETANR=AT,

Exercise 4 4. >)4

What is the output of the following program? Draw a stack diagram that shows the state of
the program when it prints the result.

TEHMNKAHEEREM 4 7 B— M ERFRT— N FHRIERF4H s ReHE89IR

>0

def recurse(n, s):
if n == 0:
print(s)
else:
recurse(n-1, n+s)
recurse(3, 0)

1. What would happen if you called this function like this: recurse(-1, 0)?

recurse(-1, 0)iX #HY;A ARBESBMH LR ?

1. Write a docstring that explains everything someone would need to know in order to use
this function (and nothing else).

AR PEHBE - M NXEFRE, Bg—THRE (kIEmME) .
The following exercises use the turtle module, described in Chapter 4:

BN A RE T BUERAIRE S Bturtle/N 5 153k,

Exercise 5 4.]5

Read the following function and see if you can figure out what it does. Then run it (see the
examples in Chapter 4).

i TERNES, BEMESFHFFRERANGER, 27— TRk (ZZBNEEEHAH
FREBERKRS)

def draw(t, length, n):

if n == 0:
return
angle = 50

t.fd(length*n)
t.1lt(angle)

draw(t, length, n-1)
t.rt(2*angle)
draw(t, length, n-1)
t.1lt(angle)
t.bk(length*n)

Figure 5.2: A Koch curve.

Exercise 6 4] 6

The Koch curve is a fractal that looks something like Figure 5.2. To draw a Koch curve with
length x, all you have to do is

Koch®lifp 2 B — Mo e 4%, HWINES.2M . EEKE AxHIXFEIZL, REMH
TR :

1. Draw a Koch curve with length x/3.

B—NKE A =9 2—xHIKochHi 4,

1. Turn left 60 degrees.
60,

1. Draw a Koch curve with length x/3.
B—NkE A =9 —xBIKoch#i £,

1. Turn right 120 degrees.
G120,

1. Draw a Koch curve with length x/3.
B—NkE A =5 —xBIKoch#i £,

1. Turn left 60 degrees.
T 360,

1. Draw a Koch curve with length x/3.
B—PkE A =5 —xBIKoch#i £,

The exception is if x is less than 3: in that case, you can just draw a straight line with length
X.

RO Zx/ N T3 eHE « IFBERT, R URE—DKEAXNELK,

1. Write a function called koch that takes a turtle and a length as parameters, and that
uses the turtle to draw a Koch curve with the given length.

BE— Ml fkochB %, A—1NNE aturtlell R —1 ¥ ElengthfiFZ S8, B AN
1 ¢, il 24 E K ElengthfIKoch B £

1. Write a function called snowflake that draws three Koch curves to make the outline of a
snowflake.Solution.

B— N lfisnowflake BB, BI=Kochli&KEIE—NSEMER, SERS

1. The Koch curve can be generalized in several ways. See here for examples and
implement your favorite.

EXKochi &M A EXRBRSZ, m& XERXREBEZHHF, BRR—TEEIREXRT

™

o]

http://thinkpython2.com/code/koch.py
http://thinkpython2.com/code/koch.py
http://en.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Koch_snowflake

Chapter 6 Fruitful functions A& [0]{& FIEK X

Many of the Python functions we have used, such as the math functions, produce return
values. But the functions we’ve written are all void: they have an effect, like printing a value
or moving a turtle, but they don’t have a return value. In this chapter you will learn to write
fruitful functions.

Bz A EZPythonfIEKEL, LI FEERE, B REHE, BFEMNE LRI
#EIROER : e —LNR, thimmE—2a, SFZF R/ 54, Btz
AR [EME

6.1 Return values R [0] /&

Calling the function generates a return value, which we usually assign to a variable or use as
part of an expression.

SR HITAR, AR E—TRERE, HBN—RIEBXNMERAENTE, HEMH
FiA L AHEKH,

e = math.exp() height = radius * math.sin(radians)

The functions we have written so far are void. Speaking casually, they have no return value;
more precisely, their return value is None.

BRI, HBNEBEERBEERAEROE, & £ite%GR0OME, BRI, XEE
#ERE 2 (None) .

In this chapter, we are (finally) going to write fruitful functions. The first example is area,
which returns the area of a circle with the given radius:

AR, BNiEREE—LEAROENEAT, B—MIFRE—THELEFENR
BOE 2 BB 4K

def area :
a = math.pi * radius**
return a

We have seen the return statement before, but in a fruitful function the return statement
includes an expression. This statement means: “Return immediately from this function and
use the following expression as a return value.” The expression can be arbitrarily
complicated, so we could have written this function more concisely:

REERAHMNZAIE 28T, BEEROANVEKEER, & lﬁli%’@ﬂu@’é“?%ii
No XMREZEANERRE : _LEUL_IEI—FEJ\/I\%ZJ\TVFﬁL@{EO [O]:2 B B AR
rAATLBEES & £ #17, FATLARI R AR+ E 47 BB B A1 7T LARE E&%EBEU‘F%
1 :

def area(radius):
return math.pi * radius**2

On the other hand, temporary variables like a can make debugging easier. Sometimes it is
useful to have multiple return statements, one in each branch of a conditional:

7o, B—LiEn T2 LLGEESARIIER G %, MUEHMET L 2 EJLFRERE
70/@! _*%I-Sxﬁ)j—l_*qqlﬁ/ﬂ;o

def absolute_value(x):
if x < 0:
return -x
else:
return Xx

Since these return statements are in an alternative conditional, only one runs.
& x kAL A REARRSY, Ritsr ERgREE—MRE#E#IT.

As soon as a return statement runs, the function terminates without executing any
subsequent statements. Code that appears after a return statement, or any other place the
flow of execution can never reach, is called dead code. In a fruitful function, it is a good idea
to ensure that every possible path through the program hits a return statement. For example:

;58 THeHE, HEMLRT, WA TEAEMNEAT, REZAEEH
3, RITREEMA MM ERMTEFTARM T, XFCZMUHE TﬁEtwab.ﬂ . EA
ROEMERRER, ENEMA—TE-MEENTE, R8s —MNREZ A,
TEAFH

def absolute_value(x):
if x < 0:
return -x
if x > 0:
return Xx

This function is incorrect because if x happens to be 0, neither condition is true, and the
function ends without hitting a return statement. If the flow of execution gets to the end of a
function, the return value is None, which is not the absolute value of 0.

ZPNEHBIZH 20, BH—BExFTFOT, AalPFME%#E, REMLIREEH,
FAERT, WITREERZMEREZE, RONFZZ (None) , MA R %R IEIOE’J
ZRAEL: S

>>> absolute_value(0)
>>> absolute_value(0)
None

By the way, Python provides a built-in function called abs that computes absolute values. As
an exercise, write a compare function takes two values, x and y, and returns 1 if x >y, 0 if x
==y,and -1ifx<y.

AR 3 —T, PythonREEREFE —TMUabshy, HiE R ER,

RE%] — T8, BE—PHRXDEEE, AadexfylE A58, MEXKFyiRENM,
MEFREI0, x/MFyiR[E-1.

6.2 Incremental development I2& R FF %

As you write larger functions, you might find yourself spending more time debugging. To deal
with increasingly complex programs, you might want to try a process called incremental
development. The goal of incremental development is to avoid long debugging sessions by
adding and testing only a small amount of code at a time. As an example, suppose you want
to find the distance between two points, given by the coordinates (x1, y1) and (x2, y2). By
the Pythagorean theorem, the distance is:

BE—L8 2 HBH R, RE4%ABIERS A Ko
BT CRHEE 2R, RAIRRGIBEXTLWHE, BEXTFLHNENZERE
kot @B, —RARxt EER/NER DT AN N K.

distance = \sqgrt{(x_2 - x_1)72 + (y_2 - y_1)Ar2}

The first step is to consider what a distance function should look like in Python. In other
words, what are the inputs (parameters) and what is the output (return value)?

BERFRFKE—TRAPythonki+ HE A REEBEMEKE N Z 2 . wAER, MANS
HEM L, HHPREEEMH L ?
In this case, the inputs are two points, which you can represent using four numbers. The

return value is the distance represented by a floating-point value. Immediately you can write
an outline of the function:

INROEE, WA EZEATREY Y, FHLREEMEFET, RENEEAR
ABEEE, ME—TERET,

def distance
return

Obviously, this version doesn’t compute distances; it always returns zero. But it is
syntactically correct, and it runs, which means that you can test it before you make it more
complicated. To test the new function, call it with sample arguments:

LURT, LAXNMBANRZEEEATHEET ; F"EHAMTLERIREIOT, HXPEH
Bz k EIEMA, MBEALETT, IHERERFTTE 2B RZBIFLEE Kad X 7o

B XD, A A 2B ECRE A —TFE

>>> distance(l, 2, 4, 6)
>>> distance(l, 2, 4, 6)
0.0

| chose these values so that the horizontal distance is 3 and the vertical distance is 4; that
way, the result is 5, the hypotenuse of a 3-4-5 triangle. When testing a function, it is useful to
know the right answer.

Tt X EWE, KENEEMZES, LEREMES ; IH#0E, FEIEEER L %5
T, B—M3-45=AFHML kT, BNEBLMEEBLEREZEMLT, ZHMX
K RBFHE,

At this point we have confirmed that the function is syntactically correct, and we can start
adding code to the body. A reasonable next step is to find the differences x2 — x1 and y2 -
y1. The next version stores those values in temporary variables and prints them.

REFBMNBSLMATT, IPHBEEELRERM, ETERMNMATUEHBERNR
m=s7, T— &%m — T Rx2-x1F1y2-y 1B E AR, FETFEMRAER@, FiEE
MNEE—LEt T =282m, RAEHE—T.

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
print('dx is', dx)
print('dy is', dy)
return 0.0

If the function is working, it should display 'dx is 3' and 'dy is 4. If so, we know that the
function is getting the right arguments and performing the first computation correctly. If not,
there are only a few lines to check. Next we compute the sum of squares of dx and dy:

XN RBRITERE, Mz B H'dxis 3'F0'dyis 4. MIRMINERT, FHAIFEER
HE2BETERN2mSE, HEEB#TITOSNEE, MREEER®, RERLS
— TR ATUITRBMATLLT, FETE, MME+EdAFdyRIEAFT,

def distance(x1, y1, x2, y2):
dx = x2 - x1

dy = y2 - yi
dsquared = dx**2 + dy**2
print('dsquared is: ', dsquared)

return 0.0

Again, you would run the program at this stage and check the output (which should be 25).
Finally, you can use math.sqrt to compute and return the result:

Ex—%, aiikATET—TERF, RXLshl, HEONZE25, HHERNE,
&E— %72 Amath.sqrtix NS EFHIRE LR -

|

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

If that works correctly, you are done. Otherwise, you might want to print the value of result
before the return statement.

MRBFIERF A, MBET. SNRIUERFEAprintiantH—THRLHELR, A
[EEHREIX M,

The final version of the function doesn’t display anything when it runs; it only returns a value.
The print statements we wrote are useful for debugging, but once you get the function
working, you should remove them. Code like that is called scaffolding because it is helpful
for building the program but is not part of the final product.

IR RLRAE Z THHIERTIEE L AMEAREH ; S PMHERFERE—D
o BNMEFXLprintiTELZDEZ AR XY, E—BREFERESIET, #uzit
printiZ A EE, X LprintX2tnl FHFRKL] Ry 2REHWERRFN, EFRREE
BIE R A RAREFEH,
When you start out, you should add only a line or two of code at a time. As you gain more
experience, you might find yourself writing and debugging bigger chunks. Either way,

incremental development can save you a lot of debugging time. The key aspects of the

process are:

HIRHFHEHE, BREARBN—miT8, FMerEZT, LB CAEME
BBERARRNDT, T, BEXF L LxBREBMTBRS A RBEFEN 7,

EA D RO ¢

1. Start with a working program and make small incremental changes. At any point, if there
is an error, you should have a good idea where it is.

—EEZA—TEEILENREFETIR, SRFBHRNIN—Lwm/NB4 . EEMHIRER 4
i%, #RZFHALRNMAE,

1. Use variables to hold intermediate values so you can display and check them.
A—ETERkGFHPRME, IHERAUER—TxEE, Kes—T,

1. Once the program is working, you might want to remove some of the scaffolding or
consolidate multiple statements into compound expressions, but only if it does not make
the program difficult to read.

EF—BREIFET, MulaziB—ExE THFEREMRI NRSRE, FREEENEZ
BARE AR FhRA, BEREHLERF T 5L %,

As an exercise, use incremental development to write a function called hypotenuse that
returns the length of the hypotenuse of a right triangle given the lengths of the two legs as
arguments. Record each stage of the development process as you go.

A4 508, AxFEE T2 WEBEEE— N ihypotenuse (#l#) BUEE, #HK
AN EEALERD K, RUBARKAEAINEA=ATMNAIBNKE, #4588
ZieFE L F T LHETHER,

6.3 Composition 2 &

As you should expect by now, you can call one function from within another. As an example,
we’'ll write a function that takes two points, the center of the circle and a point on the
perimeter, and computes the area of the circle. Assume that the center point is stored in the
variables xc and yc, and the perimeter point is in xp and yp. The first step is to find the
radius of the circle, which is the distance between the two points. We just wrote a
function,distance, that does that:

RAIER ZEZESE—TERYEMAR ZHA—1TEHE T, TEARENE—1EHEEAH
F, ITMHBEEA TSR, —T2HD, —TERARLEMNSR, RHREARITEZXINE
I A7,

Bz A O EFER—t T2 : xcHllye, HAL—RER—t T =E : xpHyp. F—F 5
EEHERZIMTANFRE, UREXA TR NEE. HMzAZaE 3 distance
HIBRERSER X 4

radius = distance(xc, yc, Xp, Yyp)

The next step is to find the area of a circle with that radius; we just wrote that, too:

T—FRERE T EHRNFEREANER ; T EERNEREHNETR T :

result = area(radius)

Encapsulating these steps in a function, we get:

B ERNT RAGE—TERHER

def circle_area :
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

The temporary variables radius and result are useful for development and debugging, but
once the program is working, we can make it more concise by composing the function calls:

e ot % ZEradiusHlresut 2 B FH 2 #8:X AN, REREFEEEIET, SALUEEM
#HFEE T -

def circle_area :
return area(distance(xc, yC, Xp, yp))

6.4 Boolean functions 7 4% %%

Functions can return booleans, which is often convenient for hiding complicated tests inside
functions. For example:

AT LOREIM R4, XMIERET e ERB AR E & k. FI40

def is_divisible
if x %y == 0:
return True
else:
return False

It is common to give boolean functions names that sound like yes/no questions; is_divisible
returns either True or False to indicate whether x is divisible by y. Here is an example:

— IR IER T &R X A R R NN AT, HINEEHITEKIIRDS ; is_divisible
XA HI BT BE S 4y B2 PR T 2 o MR B E 5 R,

>>> is_divisible(6, 4)
>>> is_divisible(6, 4)
False

>>> is_divisible(6, 3)
>>> is_divisible(6, 3)

True

The result of the == operator is a boolean, so we can write the function more concisely by
returning it directly:

WESzEFIREZRZ—NRE, FRARM AT LAR TEA LR 4R R BIEK
0

def is_divisible(x, y):
return x % == 0

Boolean functions are often used in conditional statements:

mrEB2ERTRG2E

if is_divisible(x, y):
print('x is divisible by y')

It might be tempting to write something like:

ALUATEMN XM :

if is_divisible(x, y) == True:
print('x is divisible by y'

But the extra comparison is unnecessary. As an exercise, write a function is_between(x, y, z)
that returns True if x < y <z or False otherwise.

EHHEMANLERFZELE

M—1N% 5, BE—DEHis between(x, y, z), HRx <y <znpREE, HAtERREIER,

6.5 More recursion E% i /3

We have only covered a small subset of Python, but you might be interested to know that
this subset is a complete programming language, which means that anything that can be
computed can be expressed in this language. Any program ever written could be rewritten
using only the language features you have learned so far (actually, you would need a few
commands to control devices like the mouse, disks, etc., but that’s all).

B BRIFE LB RPythontl—/ N2 F&, T X2 FELRAFE2E—EREN S,
2287, XMEKREMARTENABH TR FEFRKLE, 2 LEMAER
%ﬂ%&%ﬁﬁ%%%%U%Lﬁﬁwmmﬁ%%ﬁﬂo(%%W‘%%—%%%%ﬁ
BEPEHE &, WINEs. WAES, BEMxosZaARENE.)

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of the first
computer scientists (some would argue that he was a mathematician, but a lot of early
computer scientists started as mathematicians). Accordingly, it is known as the Turing
Thesis. For a more complete (and accurate) discussion of the Turing Thesis, | recommend
Michael Sipser’s book Introduction to the Theory of Computation.

fl 2 A RRFEIEAT X NE, MERENHENREREZ—, BARAAMEZ—T
HER, T3 BRENTENRIZERBEBZEAHERFKESHN, EILx D0 =S
AREL, KTt ELEEEERNTE, FHEEF—ARMichael Sipserfi4 :
Introduction to the Theory of Computation i+ &5 %%,

To give you an idea of what you can do with the tools you have learned so far, we’ll evaluate
a few recursively defined mathematical functions. A recursive definition is similar to a circular
definition, in the sense that the definition contains a reference to the thing being defined. A
truly circular definition is not very useful:

7 7 iLREER B A R BB S AR WX ERTERARMMA 24, BNSEE LXK
FHERE, XLEHYLEHBELN, #BPELSEFELFLERL, MEBEHE L
FREZ T AMELRENEIH, —— P REBEFANELHIAIBERKRA.

vorpal: An adjective used to describe something that is vorpal.

RIZEEY : R SRR ZRH 9,

If you saw that definition in the dictionary, you might be annoyed. On the other hand, if you
looked up the definition of the factorial function, denoted with the symbol !, you might get
something like this:

RAEARERER LEXMEL, —EREN, AMMRIRE—THEEBHEL, 1R
i 2EEMT

0!
n!

1
n (n-1)!

This definition says that the factorial of 0 is 1, and the factorial of any other value, n, is n
multiplied by the factorial of n—1.

EPNELRATONMN A1, REHER—TBENHNMNTE, EnSn-1HFEE.

So 3!lis 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3! equals 3
times 2 times 1 times 1, which is 6.

FTLASBI M et 23R LA2EI - T, M2BIM TeFh 22 LU1BIM 3k, 1899 k21T LLOBIH
T, BE—i#E, 3PN FTMETFTI21*1, BLE67T.

If you can write a recursive definition of something, you can write a Python program to
evaluate it. The first step is to decide what the parameters should be. In this case it should
be clear that factorial takes an integer:

MRBAEMARE—D# BEL, MELIAPythonfZFEL . B—FLEERBE
MASEEMN 1. EXMIER T ZAMEY Term B EIBVER & % 2EW

def factorial(n):

If the argument happens to be 0, all we have to do is return 1:

R AFB L S5 20, EREN :

def factorial(n):
if n == 0:
return 1

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n—1 and then multiply it by n:

HEAMERERT, BipsA# alAz0kEAn-10m 3k, AREHAERFE :

def factorial(n)
if n == 0:
return 1
else:
recurse = factorial(n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flow of countdown in Section 5.8. If we
call factorial with the value 3:

XN EFBE TS SEmMMAR Mt it B RABLEL, HMAMEASERARA—TX
D TBEEGR K -

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...
31720, DX —T, #En- 1M E, . .

Since 2 is not 0, we take the second branch and calculate the factorial of n-1...
2720, A —T, #En-1MH Rk, . .

Since 1 is not 0, we take the second branch and calculate the factorial of n-1...

1720, DX —TF, #8En-18903k, . .

Since 0 equals 0, we take the first branch and return 1 without making any more recursive
calls.

HOoT, WaR[E14#1TH)FHID,

The return value, 1, is multiplied by n, which is 1, and the result is returned.
ROlE 151183k, BREBRIRDO|

The return value, 1, is multiplied by n, which is 2, and the result is returned.
R[OlE 152185k, S£RERERE

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return value
of the function call that started the whole process.

2000 B Snth Rl E3%8 M, FRILRES, MK TEMRERARFINESR,
Figure 6.1 shows what the stack diagram looks like for this sequence of function calls.

B6.15R3 7 x —RIVEHGA A iEPHAE.

main_

faclorial | R —=3 recurse —= 2 result —= 6 :T/

ra

factorial | n—=2 recurse —= 1 result— 2 :.:

J/

faclorial | n—s=1 recurse —= 1 result — 1 ;,‘_

factarial n—s=0

Figure 6.1: Stack diagram.

The return values are shown being passed back up the stack. In each frame, the return
value is the value of result, which is the product of n and recurse. In the last frame, the local
variables recurse and result do not exist, because the branch that creates them does not
run.

6.6 Leap of faith B4 Bk

Following the flow of execution is one way to read programs, but it can quickly become
overwhelming. An alternative is what | call the “leap of faith”. When you come to a function
call, instead of following the flow of execution, you assume that the function works correctly
and returns the right result.

RSz TRER W EFN—f AL, BREMBZFMR. sHA—1NFHZE, HEfZ
A TBEBK®K] . HIFRBE—NHEGEANHE, RAAEEEREANKRITRIE M2
R X PHBITFEEFBREIEMIEE,

In fact, you are already practicing this leap of faith when you use built-in functions. When
you call math.cos or math.exp, you don’t examine the bodies of those functions. You just
assume that they work because the people who wrote the built-in functions were good
programmers.

L LB R XMB LR T, MEMERAERN X, ={Ri8MAmath.cos
A math.expBIet i, RAZBEFmE BXLERBREUEL, REtBR&tnEBIE, E
EXERNERBIABZRAIEFREZEAN R

The same is true when you call one of your own functions. For example, in Section 6.4, we
wrote a function called is_divisible that determines whether one number is divisible by
another. Once we have convinced ourselves that this function is correct—by examining the
code and testing—we can use the function without looking at the body again.

fRAEBCENRMEtE 2R EE, WINTEG.488, FH414t T X MN#lis_divisible
WTM%MM—AM%Ew%%—AMﬁ% —BE /@ TSR X KmE T
INHECRE 8, BN UERFRAXIMNEET, TEEESRBEKREmY 7,

The same is true of recursive programs. When you get to the recursive call, instead of
following the flow of execution, you should assume that the recursive call works (returns the
correct result) and then ask yourself, “Assuming that | can find the factorial of n-1, can |
compute the factorial of n?” It is clear that you can, by multiplying by n.

W T pRAMERERFEE, HR#1TR AR R, FARRBERENITRE, K
RFERx 2 FAMES T, ROEMBER, RARERITUADED : MRxHREEH
En-189m- 3, FREED HEEnBIHEIE 71 RE AMREBALUR, FTLnGLALLT,

Of course, it’s a bit strange to assume that the function works correctly when you haven’t
finished writing it, but that’'s why it's called a leap of faith!

LRT, BEEXREZT—THHENHEABERACEELFHAERETR, TaxthER
mnires TREw®I WRRAT, REFwH®—T.

6.7 One more example ZEKH 225

After factorial, the most common example of a recursively defined mathematical function is
fibonacci, which has the following definition (see Here):

HENEZE, BAREEERIUZES, ZR—NZAATER# BT LHEEE
#, [L](http://en.wikipedia.org/wiki/Fibonacci_numberfl T :

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number如下：

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

Translated into Python, it looks like this:

33 B Pythonfy:2 & A A0 R X 4%

def fibonacci
if n ==
return
elif n ==
return
else:
return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairly small values of n, your head
explodes. But according to the leap of faith, if you assume that the two recursive calls work
correctly, then it is clear that you get the right result by adding them together.

x BRI 8 2 X EBIRMITRIE, R—ERRR, BER—LER/NMN, (RERSFKIE
BT, BRYE I8 wwd A%, MRMEBEA D2 ARBESIE BrLEMR
REAIE T, 1RSI EMEEMEI—ERN,

6.8 Checking types # # # &Y

What happens if we call factorial and give it 1.5 as an argument?

WNRFALY F(FER1SMSEESVER ?

>>> factorial()
>>> factorial()
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. How can that be? The function has a base case—when n
== 0. But if n is not an integer, we can miss the base case and recurse forever.

BLEMGRES #B—H. Aoz s?EH X PHEBWEERERZNEFTO, B0
RNAZ—1TEBELE, METEAINELERY, REEXFH B TE

In the first recursive call, the value of nis 0.5. In the next, it is -0.5. From there, it gets
smaller (more negative), but it will never be 0. We have two choices. We can try to
generalize the factorial function to work with floating-point numbers, or we can make factorial
check the type of its argument. The first option is called the gamma function and it’s a little
beyond the scope of this book. So we’ll go for the second.

EE—R#)38 BAMH %, #3BnE20.5. T—2oRm2E-0.5.
M FFEE, X MEstisEs/h (KT ENIAET) BRzEASEO.

A AmFHEE, BTN BN REBNERTURZRBHSHM, &R
LLrm s — T8 £, E—FMiapMREH—MIBEY, XBLBET R
BEBEE. MUEMNBEZMHAE,

GFEE - M2 (GammaE#) , MURNE—RD, ENMREVESZBSEHRLYE
H— 2 W, ZEBESTE. BiFe, RE2AERNAGBELEEENLA. 5ER
P RHIHEE WIBEE, g — xRS,) We can use the built-in function
isinstance to verify the type of the argument. While we’re at it, we can also make sure the
argument is positive:

B LLARERNisinstance ERHBRFIMSHN £ 8, BNt BHRE—TSHEEKRT
OBy :

def factorial (n):

if not isinstance(n, int):
print('Factorial is only defined for integers.')
return None

elif n < 0:
print('Factorial is not defined for negative integers.')
return None

elif n == 0:
return 1

else:
return n * factorial(n-1)

The first base case handles nonintegers; the second handles negative integers. In both

cases, the program prints an error message and returns None to indicate that something
went wrong:

B—NEEFUARRIBIFEY ; BTN ARKIE Q B, E/NHEE i SRt
1%, H¥mMSHHE2ER, ROZTRAHAHERERAHLET -

>>> factorial('fred')

>>> factorial('fred')

Factorial is only defined for integers. None

>>> factorial(-2)

>>> factorial(-2)

Factorial is not defined for negative integers. None

If we get past both checks, we know that n is positive or zero, so we can prove that the
recursion terminates.

MR NMe LB T, ERENZERERZEO, FALURIE# 2889 EMR#THIL
IET,

This program demonstrates a pattern sometimes called a guardian. The first two
conditionals act as guardians, protecting the code that follows from values that might cause
an error. The guardians make it possible to prove the correctness of the code.

TREFERT— %EPﬂlHﬁSl rred BORN, AIANKERIDET T IHAS, BB TH
Eb%lﬁ@famﬁ’]igo Lo5F TRE S R BN 2 1T IERA,

In Section 11.4 we will see a more flexible alternative to printing an error message: raising
an exception.

ANABMZRBIESHRENLELN, SnH4RER, FLRRER.

6.9 Debugging & X

Breaking a large program into smaller functions creates natural checkpoints for debugging. If
a function is not working, there are three possibilities to consider:

RKHERYID /N E, FMEAABAIAREBIL T — T MMLE R, EATESN
HHEmE, B/LMSEE 28 :

* There is something wrong with the arguments the function is getting; a precondition is
violated.

HEEBNSHATREH, BEREZEHRE,
e There is something wrong with the function; a postcondition is violated.
HBAGHEEH, REREEHE,
* There is something wrong with the return value or the way it is being used.
IR [O] 48 SE R [Ol8 AR T AT RER 44,

To rule out the first possibility, you can add a print statement at the beginning of the function
and display the values of the parameters (and maybe their types). Or you can write code
that checks the preconditions explicitly. If the parameters look good, add a print statement
before each return statement and display the return value. If possible, check the result by
hand. Consider calling the function with values that make it easy to check the result (as in
Section 6.2).

EERRE—MER, REERBIF LBeHERMN—Dprintiz 8, KinH—TS5HB@
(RFMExE) , HEMRATUE—DKZKBEHEL S —TAIBEREZE # B

MRMXSEELELRPE, B —DREEAZEEN Lprintiz 8, 2R—TERE
ME, MRALINE, REXBEXREZ—TIELR, BEE—R. REABBMANE
B, sEpsEREHELE (LLNE6. 244,)

If the function seems to be working, look at the function call to make sure the return value is
being used correctly (or used at all!). Adding print statements at the beginning and end of a
function can help make the flow of execution more visible. For example, here is a version of
factorial with print statements:

MREEEF RSP, Bes— FTRENAR, ks —TROAZETE2ERE, 7
PRI [E] 14 #RIEFAE R,

RN L EBR MM 28, BREREMHITREEMT A, LI TEME—
NEH BRAB) FEHE

def factorial(n):

space = ' ' * (4 * n)

print(space, 'factorial', n)

if n == 0:
print(space, 'returning 1'")
return 1

else:
recurse = factorial(n-1)
result = n * recurse
print(space, 'returning', result)
return result

space is a string of space characters that controls the indentation of the output. Here is the
result of factorial(4) :

spaceT X BER—HREBHNFRE, EAREHHEN, TEAMRSLINNRSENLER :

factorial 4
factorial 3
factorial 2
factorial 1
factorial ©
returning 1
returning 1
returning 2
returning 6
returning 24

If you are confused about the flow of execution, this kind of output can be helpful. It takes
some time to develop effective scaffolding, but a little bit of scaffolding can save a lot of

debugging.

WMRRx AT RIZL AR, xfmHSE—EHEH, AEM#ITHFRFALEEE
i E By, (EMEAA—TXMER, RMeess H B XAN i,

6.10 Glossary K iz%3%

temporary variable: A variable used to store an intermediate value in a complex calculation.

e T8 ARGERE 2B BPh s —EhEaant &,

dead code: Part of a program that can never run, often because it appears after a return
statement.

TR : —MOARZWEITHNSD, —REHAETREZEDZE,

incremental development: A program development plan intended to avoid debugging by
adding and testing only a small amount of code at a time.

AR L BFEFLHN—FAR, SREAMBETIERCL#IT/ NAEREMENR
K BRK 8 X BOFE T 5E .

scaffolding: Code that is used during program development but is not part of the final
version.

HFERRD : ERFTL M RERNRD, BERARFHITIZEEILERD,

guardian: A programming pattern that uses a conditional statement to check for and handle
circumstances that might cause an error.

T —MRERN, ER-ERGEURLBRMKE LTS B4 2R,

6.11 Exercises %)

Exercise 1 4 -] 1
Draw a stack diagram for the following program. What does the program print?
A TEHNEFEAR. BRHdaEHtoasn?

def b
prod = a(z, z)
print(z, prod)
return prod

def a
X = X +
return x * y
def c :

total = x +y + z
square = b(total)**
return square

X

y = x +
print(c(x, y+3, x+y))

Exercise 2 4.3 2

The Ackermann function, A(m, n), is defined:

e SERBEIE LA ¢

A(m, n) = n+l if m=0
A(m-1, 1) if m>0 and n =0
A(m-1, A(m, n-1)) if m>0 and n > 0.

See Here. Write a function named ack that evaluates the Ackermann function. Use your
function to evaluate ack(3, 4), which should be 125. What happens for larger values of m
and n? Solution.

B—TFx itE, B—PUHfackIERE, = LEXMWRSERE. BIRE HEEE
i+ 8ack(3, 4), £RpzE125.FEMIINEXR—LEREL#E, #EHNKRS.

Exercise 3 4.°]3

A palindrome is a word that is spelled the same backward and forward, like “noon” and
“redivider”. Recursively, a word is a palindrome if the first and last letters are the same and
the middle is a palindrome.

EXB R m e EFMEIFEHEERY, Hilnoonkd kredivider, Fi# aHIBERKE,
O35 IR EMR, A Eia =lI3:E,

The following are functions that take a string argument and return the first, last, and middle
letters:

THNERHBZREFFTEFN LS, REROIRHELE, BEUAKkA EFE

def first(word):
return word[0]

def last(word):
return word[-1]

def middle(word):
return word[1:-1]

We’'ll see how they work in Chapter 8.
BAERNMNBEEENRIEELILEN,

1. Type these functions into a file named palindrome.py and test them out. What happens
if you call middle with a string with two letters? One letter? What about the empty string,
which is written " and contains no letters?

X LB B A B — D& FUMHpalindrome.pyBI XX R, i — T,
MRFERERA— N REANFRANFRERELE? N FRUELE?
ZEFRFE, thin T) REEAFEM, Bai?

1. Write a function called is_palindrome that takes a string argument and returns True if it
is a palindrome and False otherwise. Remember that you can use the built-in function

http://en.wikipedia.org/wiki/Ackermann_function
http://thinkpython2.com/code/ackermann.py
http://en.wikipedia.org/wiki/Ackermann_function
http://thinkpython2.com/code/ackermann.py

len to check the length of a string. Solution:
http://thinkpython2.com/code/palindrome_soln.py.

— & Mlis_palindromeBIE%L, FRAFREEA LS, REFRFEEE #0306
EE BER, HlE, RATUARENenEERE & FZFRMKE,

Exercise 4 4] 4

A number, a, is a power of b if it is divisible by b and a/b is a power of b. Write a function
called is_power that takes parameters a and b and returns True if a is a power of b. Note:
you will have to think about the base case.

— PN FaybBr (power) , INRagEss bR, FHa/lbZbBi, BE— P UHH
is_power BUEEIE W aFIb/E AT RS, MNRaZbMxFREIE, T8 : EX A FEE
e

Exercise 5 45)5

The greatest common divisor (GCD) of a and b is the largest number that divides both of
them with no remainder.

aflbHITR KRR EZIERER 6t [F 1% A DNERRMIR B RBIBR L F R KA.

One way to find the GCD of two numbers is based on the observation that if r is the
remainder when a is divided by b, then gcd(a, b) = gcd(b, r). As a base case, we can use
gcd(a, 0) =

BRAANAHAMHN—MEERAR, MRUr2afRUbBIRE, HLaflbMIm AL 4HESb
MR KA H/HEE, EEFERaMONE KL Aa,

Write a function called gcd that takes parameters a and b and returns their greatest common
divisor.

— P EAUgcdRIERE, MaflbAm MRS, BREMMIPIRKAHE,

Credit: This exercise is based on an example from Abelson and Sussman’s Structure and
Interpretation of Computer Programs.

Bt 1 x5 &% T AbelsonF1Sussmanty i+ ENIZFE & IR — B,

http://thinkpython2.com/code/palindrome_soln.py

Chapter 7 Iteration %X

This chapter is about iteration, which is the ability to run a block of statements repeatedly.
We saw a kind of iteration, using recursion, in Section 5.8. We saw another kind, using a for
loop, in Section 4.2. In this chapter we’ll see yet another kind, using a while statement. But
first | want to say a little more about variable assignment.

X—EBHAHER, GEHAABEEE R TR 8, 7E5.809nHEF 113 T —Fh
ER— 3, FA2BMEFET A —MER—TForfE3R, TERE, Bi1S LEFIE
KAR : whieizd, BRELBBEHH—T T =W 14,

7.1 Reassignment B {&

As you may have discovered, it is legal to make more than one assignment to the same
variable. A new assignment makes an existing variable refer to a new value (and stop
referring to the old value).

RAEE2LAT, MA—NEETUSR#ITHME. —RFNRAERFSEENLTER
SHE (R ABEIRNET,)

GFEE : aPNERPXRIFER, EXHPFALEERREREE, AREFEREESN
RS,)

>>>
>>>
>>>
>>>

X X X X

>>>
>>>
>>>
>>>

X X X X

The first time we display x, its value is 5; the second time, its value is 7.
BRI TxHE, B5 BR, METT.

Figure 7.1 shows what reassignment looks like in a state diagram.
B7ART T BRANREERSEPHETF,

At this point | want to address a common source of confusion. Because Python uses the
equal sign (=) for assignment, it is tempting to interpret a statement like a =b as a
mathematical proposition of equality; that is, the claim that a and b are equal. But this

Think Python 2e 3 kR

interpretation is wrong.

xEBRMEBRA—TARE L £802#, EYPythonfER£ES (=) Rw@E, FIUEH
AR A Ra=bX #B1iZ AR INAEFE LHOR L —H KR mEBERE, sMBEZH2
B !

First, equality is a symmetric relationship and assignment is not. For example, in
mathematics, if a=7 then 7=a. But in Python, the statementa = 7 is legal and 7 = a is not.

B, HFELNESMERTINEER—MxIMHNXR, MPythonhESHRERIEER
tFREY, Hegn, EFEFELE, Ra=7, #T7=a, MIEPython, a=7XPMEEFiEEM,
m7=az %8,

G3EE : FERMEPythonPESE—MEmANEE, RELEFSALNERLEFS
EREE, MPythonFH Lt BHF ERAFHMNEREN, MERFS (==) , &1
=B AIVER, FiEita==b, BLb==a, FHEHa==3, 3==atbdLL,)

Also, in mathematics, a proposition of equality is either true or false for all time. If a=b now,
then a will always equal b. In Python, an assignment statement can make two variables
equal, but they don’t have to stay that way:

BHEHZLE, —MEEXRELEE, E4Z2R. tbiNa=b, ramakizEFb, £
PythonE M|, wEz8aLita N 2M8%F, BATURBRLEESE, WTM::

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

and b are now equal a#lb#BET
and b are now equal a#lb#BET
and b are no longer equal #iEaflbFLFAHEEFET
and b are no longer equal #iEaflbFLAHEEFET

T OT9 9 T O
[L I VI VA |
wWwe o g
K HH
U LR)

The third line changes the value of a but does not change the value of b, so they are no
longer equal.

B=ITHE TalE, ERBWREbENE, FIULENBMABESET,

Reassigning variables is often useful, but you should use it with caution. If the values of
variables change frequently, it can make the code difficult to read and debug.

st 2EHTHEBRALESRERN, BMRANHEEMIF LIRS, R EMNERE
T b, FLRTREILA A8 % LAY i 708 Ko

Figure 7.1: State diagram.

Chapter 7 lteration 2% 120

7.2 Updating variables B =

A common kind of reassignment is an update, where the new value of the variable depends
on the old.

e L —MER A T EHTEH, IMERTHINEZEREED E#TEN

SEJiS

N

)

[e]

>>> X
>>> X

This means “get the current value of x, add one, and then update x with the new value.” If
you try to update a variable that doesn’t exist, you get an error, because Python evaluates
the right side before it assigns a value to x:

FEMNEZEINERE ”W@ﬁﬁ%ﬁ?ﬁﬁ%&mm REIBERIEAFEBR L X, W
RIRA A FEN T EHTEH, RAREFEIE 2T, RAPythonBEE#ITHES L MiE
B, REFEEW AL X,

>>> X = X +
>>> X = X +
NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assignment:
HEREFH—D T EA], REEMBE—T, —BUE2H LRE—TMITLT :

>>>
>>>
>>>
>>>

X X X X

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.

= SR AT LAUME—M 218, FRAFII A AME R AT .

7.3 The while statement {&*f : Whileiz A

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks
without making errors is something that computers do well and people do poorly. In a
computer program, repetition is also called iteration.

HEISEBRAREH T -EEENES. ERRFNKERUNTES, MAHE,
ZZH BN HERNER, 4N ARBTRET. 2—NEVNEFER, E5&FE
W ALHEEE A,

We have already seen two functions, countdown and print_n, that iterate using recursion.
Because iteration is so common, Python provides language features to make it easier. One
is the for statement we saw in Section 4.2. We'll get back to that later. Another is the while
statement. Here is a version of countdown that uses a while statement:

FME2 it AFER T #)3 R TERBEE - #it st B #lcountdown, LAKnR# H
EH#print_n, Pythoniz i@t T —L£IThEeR 5 LiER, RAERNANREE. HP—1 5
EHBMNE4.2FR LEINforfER iz A, FRENEZEEI—TEB. AH4—TmEwhilefEr
4, TEME—MER T whilefE 55 835 52 5 B9E+ 5 & countdown :

def countdown(n):
while n > 0:
print(n)
n=n-1
print('Blastoff!")

You can almost read the while statement as if it were English. It means, “While n is greater
than 0, display the value of n and then decrement n. When you get to 0, display the word
Blastoff!”

whilef&3* 202X EBR S, LIEMEERERE—HGE, IPTHBMWERR : &inKkTF
0, FhirHnta, AFEnA1, BInETFORIH%, miiaH %43 [Blastoffl .

More formally, here is the flow of execution for a while statement:

HEX—=, TEZ—MwhilefEFzmN#HITRE :

1. Determine whether the condition is true or false.
FIMrE R RHER,

1. If false, exit the while statement and continue execution at the next statement.
INRZ/BY, RiEwhileiz®, 44z 1TEEREE,

1. If the condition is true, run the body and then go back to step 1.
MRFMAHE, HIATEFRE, RAEBAQIE T,

This type of flow is called a loop because the third step loops back around to the top. The
body of the loop should change the value of one or more variables so that the condition
becomes false eventually and the loop terminates.

I ARz TREWSES, EAB=ZSLRBEFRAB—F. BFAERERT —PHE
BL T ENME, IHBARMGRATERINER, AREEFTELL

Otherwise the loop will repeat forever, which is called an infinite loop. An endless source of
amusement for computer scientists is the observation that the directions on shampoo,
“Lather, rinse, repeat”, are an infinite loop.

BNBE, RETEHR, BFRTERFL, IMUMETRES . +BNRERE 1K
%, MEERELRENE 28, A%, £8 ; IRE—NELRER.

In the case of countdown, we can prove that the loop terminates: if n is zero or negative, the
loop never runs. Otherwise, n gets smaller each time through the loop, so eventually we

have to get to 0.

B+ st B countdown B, -4 MBEQRIEA IR LEFLLE : REnNTFFTOT,
BEAMAAIT T, BUBE, nEBRUZBREFRRLA, RAZSEFI0H,

For some other loops, it is not so easy to tell. For example:

Hth— LB Ao F il 7, Hoan

def sequence(n):

while n != 1:
print(n)
if n % == 0: # n is even
n=n/2
else: # n is odd

n=n*3 + 1

The condition for this loop is n != 1, so the loop will continue until n is 1, which makes the

condition false.

I MEARHIMRERNAFT, FIAEF—E#1T, BEEInEFT1T, REHR, BF
BIERT,

Each time through the loop, the program outputs the value of n and then checks whether it is
even or odd. If it is even, n is divided by 2. If it is odd, the value of n is replaced with n*3 + 1.
For example, if the argument passed to sequence is 3, the resulting values of n are 3, 10, 5,
16, 8,4, 2, 1.

BREFBeHE, BFEHENE, ﬁ*}:%‘éﬁ—_l:%ﬁiﬁli\akiﬁl IMRZBE, it
nFREL2, INRZFH, FIBnEH AnLUSEMIM @, LINEXDEHEAIMMSE, 1
#hEsequence(3), FEIMINI@EEIKIR A : 3,10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will
ever reach 1, or that the program terminates. For some particular values of n, we can prove
termination. For example, if the starting value is a power of two, n will be even every time

through the loop until it reaches 1. The previous example ends with such a sequence,
starting with 16.

Bt En R, BeHEnERE, PTLURER L e ERANGARTIMERFL, 4T
—LERENINE, FABESBERER kL, FIMIMNRERERE—D2MEE, nEREF
I ERAZER, EXFR1CE, AN FHRRLFET -, M16FBHIRLE
TO

The hard question is whether we can prove that this program terminates for all positive
values of n. So far, no one has been able to prove it or disprove it! See WikiPedia

BEEMgERE, HNES LRI MEFRHERESRNINEERELILTER, BRIy, &8
ANBE9 i BAE B E X P ap o

SE 4 ELE 7L As an exercise, rewrite the function print_n from Section 5.8 using iteration
instead of recursion.

M—" %5, B5.8EMBIAR T NRITENE Hprint_nFERBITEEK % #o

7.4 break H§f

Sometimes you don’t know it’s time to end a loop until you get half way through the body. In
that case you can use the break statement to jump out of the loop.

B EAR AR E 4 o R 2% IEE 2R, PIBEIEMFER B (& AR E B & 1T, X e EIREL
A LA Abreakiz B Bk H &7,

For example, suppose you want to take input from the user until they type done. You could
write:

tetn, R RELA P A—LERNE, Hftqis AdoneByet{E R, RELRTLLRAIITEY
FiEER

while True:
line = input('> ")

if line == 'done':
break
print(line)

print('Done!")

The loop condition is True, which is always true, so the loop runs until it hits the break
statement.

BErEErLZtrue, BRI LEER, FTUEAFRR—E#TT, —EZIfR% Tbreakiz &
FHEH,

http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Collatz_conjecture

Each time through, it prompts the user with an angle bracket. If the user types done, the
break statement exits the loop. Otherwise the program echoes whatever the user types and
goes back to the top of the loop. Here’s a sample run:

BREFNE, BEHIE-—INATS>RKETH 7. MNERAH#H A Tdone, breakiza
MR iLEFHHES. Bl B’Jiﬂ%@é%ﬁﬁﬁﬁiﬁ)\ﬂ@?ﬂﬁ, ARORTEFLER. T
mEE— T A a7 hlF

>>>not done
>>>not done
>>>not done
>>>not done
>>>done
>>>done
Done!

This way of writing while loops is common because you can check the condition anywhere in
the loop (not just at the top) and you can express the stop condition affirmatively (“stop when
this happens”) rather than negatively (“keep going until that happens”).

ZMwhilelBARIBERE L, B X AR LUEE SR BRI — D ERL xS 17480,
MR A TEFBI K AR, (RALUAE R B E LSRG (EXMIBR TRUELE
T) , MAZERLER MEFa—Eiz17, BEIEMBRI .

7.5 Square roots L 51R

Loops are often used in programs that compute numerical results by starting with an
approximate answer and iteratively improving it.

BB RAT
BZE # s AN

TRz BNREFF, sMEFFERE —NaMafy ke, A

#1
#HUEEE 2 4,

For example, one way of computing square roots is Newton’s method. Suppose that you
want to know the square root of a. If you start with almost any estimate, x, you can compute
a better estimate with the following formula:

teon, AURA4wERTEFEAR, MAREE— M EHaEAR, RRAEE—
it xSRI IR, RAUATENAR KT —PEREE !

y = \frac{x + \frac{a}{x}}{2}

For example, if ais 4 and x is 3:

tbn, #0RaZE3, xi&kH3 :

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
2.16666666667

Wwbh b

(x + a’x) / 2
(x + a’x) / 2

KKK X X292

The result is closer to the correct answer (square root of 4 is 2). If we repeat the process
with the new estimate, it gets even closer:

FENEREAGESEELE R & (ANFEARZE2) . WRIATAX DL REFTHIE I+
BREEXNEE, SRMEMEGLT

>>> X =y

>>> X =y

>>>y = (x + a/x) / 2
>>>y = (x + a/x) / 2
>>> y 2.00641025641
>>> y 2.00641025641

After a few more updates, the estimate is almost exact:

xHE#T-EREELE, GitAR/LFRERT :

>>> X =y

>>> X =y

>>>y = (x + a/x) / 2
>>>y = (x + a/x) / 2
>>> y 2.00001024003
>>> y 2.00001024003
>>> X =y

>>> X =y

>>>y = (x + a/x) / 2
>>>y = (x + a/x) / 2
>>> y 2.00000000003
>>> y 2.00000000003

In general we don’t know ahead of time how many steps it takes to get to the right answer,
but we know when we get there because the estimate stops changing:

—MRIERT, BMNTERIMER X EALEREFEL Kt), BRUMITEABERL
TAERIRHER M FAEE T

>>> X =y
>>> X =y
>>>y = (x + a/x) / 2
>>>y = (x + a/x) / 2
>>>y 2.0
>>>y 2.0
>>> X =y
>>> X =y
>>> y = (X + a/x) / 2
>>> y = (x + a/x) / 2
>>>y 2.0
>>>y 2.0

When y == x, we can stop. Here is a loop that starts with an initial estimate, x, and improves
it until it stops changing:

ByMxEFE R, HNAATLUMFLET, TEXMEFRHR, B—DH5EEXCRTTIRTEF,
RE#ITHH, —BEEXNERNBZIEA L

while True:
print(x)
y = (x +a/x) / 2
if y == x:
break
X =y

For most values of a this works fine, but in general it is dangerous to test float equality.
Floating-point values are only approximately right: most rational numbers, like 1/3, and
irrational numbers, like V2, can’t be represented exactly with a float.

RS EFRN, XMEAERERD, B AFZREKNXFAZRERH,
TR A REREMER : KEHWAIELE, ba1/3, UKRFTER, RS2, #
TRERF RBUR AR B,

Rather than checking whether x and y are exactly equal, it is safer to use the built-in function
abs to compute the absolute value, or magnitude, of the difference between them:

Hee T, SExtxMyRaHERESE, BFRMUTHEERERZS FREN% EE
FHE—TEaMstE, BUEHRE s,

if abs(y-x) < epsilon:
break

Where epsilon has a value like 0.0000001 that determines how close is close enough.

X BALLikepsilon#I 4 #like 0.0000001, Z@LEXANNELBBEZ2RBHSEIL T,

7.6 Algorithms &%

Newton’s method is an example of an algorithm: it is a mechanical process for solving a
category of problems (in this case, computing square roots).

H R EEN—NF @it — RIS R AR — £ m A (EAERZEAET
BEAR) .

To understand what an algorithm is, it might help to start with something that is not an
algorithm. When you learned to multiply single-digit numbers, you probably memorized the
multiplication table. In effect, you memorized 100 specific solutions. That kind of knowledge
is not algorithmic.

RERBEBERM L, FN—ERREENATRTBEAZBMER. SIRENMIBF
TR R, RAREET FRENFER, 2HLFSETI00MEERNER. MR
MAREE.

But if you were “lazy”, you might have learned a few tricks. For example, to find the product
of n and 9, you can write n—1 as the first digit and 10-n as the second digit. This trick is a
general solution for multiplying any single-digit number by 9. That’s an algorithm!

BINRIRR Td , REAATBESE —L/NI5, LN E—Pn5989E4:, RATLUEN-1
B HE—L, 10-niBER (L, XPMRITE g HEANMIBFRUINERX, ZHE2—T
BT !

Similarly, the techniques you learned for addition with carrying, subtraction with borrowing,
and long division are all algorithms. One of the characteristics of algorithms is that they do
not require any intelligence to carry out. They are mechanical processes where each step
follows from the last according to a simple set of rules.

B, RPN ARINE, BARRE, URKRE, BRFEE, xEFEN—
HEFRAETFEEMNENMEH#TT. SNBEINWNLTE, S—FHREL—F,
BREERE EH—FEAN.

Executing algorithms is boring, but designing them is interesting, intellectually challenging,
and a central part of computer science.

MATEERE TN, B +EEEER, E5HEMN—MikE, hRTENRZHX
IDVERSY S

Some of the things that people do naturally, without difficulty or conscious thought, are the
hardest to express algorithmically. Understanding natural language is a good example. We
all do it, but so far no one has been able to explain how we do it, at least not in the form of
an algorithm.

BREBAMNESEERRE £, EEHTHEE, IEFBHTE&RREABEERSL,
LInERB R EEMEN0F. FnNEAEERBNEE, BERIN LR E ANERET
NAESELAMEN, EVEBEAEINIRRBAHEENE.

7.7 Debugging A iX

As you start writing bigger programs, you might find yourself spending more time debugging.
More code means more chances to make an error and more places for bugs to hide.

AEMBLTIIRE—LLRANEFT, RUELAECLRERRIEES [RF/ KT .
KBHE, HREREHANTREBEAT, bugh B TESHEEZL T,

One way to cut your debugging time is “debugging by bisection”. For example, if there are
100 lines in your program and you check them one at a time, it would take 100 steps.
Instead, try to break the problem in half. Look at the middle of the program, or near it, for an
intermediate value you can check. Add a print statement (or something else that has a
verifiable effect) and run the program.

Fxti7imiXd B—F ¥ BiERXet BRUAE. i, MRIENERE10017, Ri&E—BRL
BAB100F T, MxATAEMRIEREFOXAF. BREFPRAME, HEFEFELE
B, ¥t —LhEfb, EXREMERMN—Lprintiza) (FEHEEHMEESBER I 2 WRH
A7) , RRETRERF.

If the mid-point check is incorrect, there must be a problem in the first half of the program. If
it is correct, the problem is in the second half.

MRFPEREEHET, BOAZREFIRTFEOB P . WRPERZEK, i A
MEEEFERT,

Every time you perform a check like this, you halve the number of lines you have to search.
After six steps (which is fewer than 100), you would be down to one or two lines of code, at
least in theory.

FRIFE XA E, FLRERENABBERF T, —RAPZE (Z/hT100R
7)), B EMRERZE2IRNBHNRE—RITT,

In practice it is not always clear what the “middle of the program” is and not always possible
to check it. It doesn’t make sense to count lines and find the exact midpoint. Instead, think
about places in the program where there might be errors and places where it is easy to put a
check. Then choose a spot where you think the chances are about the same that the bug is
before or after the check.

FExmrFEd, BEFPAEHFAELRLHHE, BRUMBESERE. FTUTH
BATECRBAEN T A R, HRH, REZE—TREFFFEMTEZ AR, REHE
WH TR LR BZMITT . RBRMMAEMRE L FHNULERR — FEEHbugEER ML
EXAIZEEZE,

7.8 Glossary R 275

reassignment: Assigning a new value to a variable that already exists.
BRE =T EaBFENE AT ER T — MBI,
update: An assignment where the new value of the variable depends on the old.
B RIE- DT ENEE, #IT-ENBN, BRELZITNETE,
initialization: An assignment that gives an initial value to a variable that will be updated.
Miale : =N R EWIRE, UETRLAITERH,
increment: An update that increases the value of a variable (often by one).
B8 BRA—TEEBIN—ENE (—#&ZEM1)
decrement: An update that decreases the value of a variable.
#H BRA—IN T EAE—ENM.

iteration: Repeated execution of a set of statements using either a recursive function call or
a loop.

BN BEENT—RIER, ER#AREARNAR, HEBEFHHGR,
infinite loop: A loop in which the terminating condition is never satisfied.
FTPRTEF @ & b Sk Tk % B BITEF,
algorithm: A general process for solving a category of problems.

% BARE— 2 —RIBRAND 5%,

7.9 Exercises %4 7]

Exercise 1 %431

Copy the loop from Section 7.5 and encapsulate it in a function called mysqrt that takes a as
a parameter, chooses a reasonable value of x, and returns an estimate of the square root of
a.

M7 58 H—NEF, REREMRAFUEMYysqrifIE %, ZEHH

F—MEHNEREX, REREaRTHREEEUE,

—Talf A58, %

To test it, write a function named test_square_root that prints a table like this:

M3 X P EK

1.0

2.0

3.0

4.0

2.0

6.0

7.0

8.0

9.0

HE, BE—H#test sugare rootPIEREIE 4 HH UL T X £ HIRHE -

mysqrt(a)

1.0
1.41421356237
1.73205080757
2.0
2.2360679775
2.44948974278
2.645/75131106
2.82842712475

3.0

math.sqrt(a)
1.0
1.41421356237
1.73205080757
2.0
2.2360679775
2.44948974278
2.64575131106
2.82842712475

3.0

diff

0.0
2.22044604925e-16
0.0

0.0

0.0

0.0

0.0
4.4408920985e-16

0.0

The first column is a number, a; the second column is the square root of acomputed with

mysqrt; the third column is the square root computed by math.sqrt; the fourth column is the

absolute value of the difference between the two estimates.

E—IEHKa ;
HNE&EMmath.sqrtEBLHENTE AR, &E—

Exercise 2 4.3 2

BHZ2 A B ESEMNEEmysqriit EHEMNESR, F=1T=2FAPython
TRX mENZE %4,

The built-in function eval takes a string and evaluates it using the Python interpreter. For

example:

PythonFI N E B #evaliE= I F R/ £ 1F 4 S,

PR IE FIPythonBYfZ 22 28 3K 5 17, U0 :

>>> eval('1l
>>> eval('1l
7

>>> import math

>>> import math

>>> eval('math.sqrt(5)"')
>>> eval('math.sqrt(5)"')
2.2360679774997898

>>> eval('type(math.pi)')
>>> eval('type(math.pi)"')
<class 'float'>

+2*31)
+2*31)

Write a function called eval_loop that iteratively prompts the user, takes the resulting input
and evaluates it using eval, and prints the result.

BE—llfeval loopBIE#El, X EHIREERA F, #BUGA, AEHevalstig ATz
B, BLRITEHHE,

It should continue until the user enters 'done’, and then return the value of the last
expression it evaluated.

BN EFE—EETT, EFRA A ldonel i1k, AEHEEE—RTENRERN
P

Exercise 3 4] 3

The mathematician Srinivasa Ramanujan found an infinite series that can be used to
generate a numerical approximation of 1/ :

EHFHRHERNIBEL AT — 15 £ (1914F/05830) , AR TERBEXRE
A ELE -

1 242 i (4k)!(26390k + 1103)
o (k1)*396™

T 992

(FEF U BER—UIEERNHNHER, BFEXT, LB HTEMERS, F
1833 ¥ et iR F R, MRRIE % BHE KBTI XT,) Write a function called
estimate_pi that uses this formula to compute and return an estimate of 1. It should use a
while loop to compute terms of the summation until the last term is smaller than 1e-15
(which is Python notation for 10—15). You can check the result by comparing it to math.pi.
Solution

B—/%Mlestimate pifIk#, ALEXNMARERFTEHFRE—DEBRTAGEL G, &
FA—Pwhilef& ki EE L HNNE—6, RE—ME/NF1089-15R A, fRETLLIsttL
— i+ E & RMPython R E M math.pi,

BB

http://thinkpython2.com/code/pi.py
http://thinkpython2.com/code/pi.py

Think Python 2e 13X hR

Chapter 7 lteration 34X 133

Chapter 8 Strings =&

Strings are not like integers, floats, and booleans. A string is a sequence, which means it is
an ordered collection of other values. In this chapter you’ll see how to access the characters
that make up a string, and you'll learn about some of the methods strings provide.

FREMER., FREURSGFART—#, —TFREZE—TFI, BHREE 1 Ht
BB FHS. EAERFEIAENFRFEPNFER, PR —EFRFHEEX
7335,

8.1 A string is a sequence ZFE2F7

A string is a sequence of characters. You can access the characters one at a time with the
bracket operator:

FRHERE—BEFNFR. MMULLBL AESIEER, BREFEFRHEHRH—INF
T

>>> fruit = 'banana'
>>> fruit = 'banana'
>>> letter = fruit[1]
>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to letter.
BEZNEA®%FT fruit RNERENFES H1NER, FHIEXDNFERIBEL T letter XA

(FEE : BE—TXEN letter B— Mt 2B T E,) The expression in brackets is
called an index. The index indicates which character in the sequence you want (hence the
name). But you might not get what you expect:

AESRBABTUWEREl, REERTIRAEENFHERFHNMLE (RIREFER

%) .

BRI HE % RSN L RANRAHNE R —#

>>> letter
>>> letter
lal

For most people, the first letter of 'banana’ is b, not a. But for computer scientists, the index
is an offset from the beginning of the string, and the offset of the first letter is zero.

AZHAERIA Hybanana B9 [1] DNFEREZE D, MARZ a. BxtTi+BEHBFRFE
it, REIBRFHEMLNREEE, FMIUEENEFRREEE R Z220.

>>> letter
>>> letter
>>> letter
>>> letter
lb!

fruit[o]
fruit[o]

So b is the Oth letter (“zero-eth”) of 'banana’, a is the 1th letter (“one-eth”), and n is the 2th
letter (“two-eth”).

FTEA b Sl fF & banana B8 F0J NFRF, Ma % M1 N, n#mEE 210 17,
As an index you can use an expression that contains variables and operators:

RAILEAERESANRSIPER T EMREN

>>> j = 1

>>> j = 1

>>> fruit[i]
>>> fruit[i]
la!

>>> fruit[i+1]
>>> fruit[i+1]
ln!

But the value of the index has to be an integer. Otherwise you get:

HEIENE, RIINWEADARETH. SNRMEER £ B4:27 ¢

>>> letter = fruit[1.5]
>>> letter = fruit[1.5]
TypeError: string indices must be integers

8.2len kE

len is a built-in function that returns the number of characters in a string:

len 2—THRERY, ZRE—NMFHEPFRHIOKE

>>> fruit 'banana’
>>> fruit 'banana’
>>> len(fruit) 6
>>> len(fruit) 6

To get the last letter of a string, you might be tempted to try something like this:

ERI—NFHENRE—NFF, FAERIBEENA len K :

>>> length = len(fruit)
>>> length = len(fruit)
>>> last = fruit[length]
>>> last = fruit[length]
IndexError: string index out of range

The reason for the IndexError is that there is no letter in ’banana’ with the index 6. Since we
started counting at zero, the six letters are numbered 0 to 5. To get the last character, you
have to subtract 1 from length:

HmRE| 42 MRERFLEbanana XPNFERBES 6] MIBEZEEFEM., EAHHM

MOFFIaEY, FTLLX —HENFRBIAFZ0E55., ALBERIRE—RFHR, (RFERE
FREKENEM EAEIFIT

>>> last = fruit[length-1]
>>> last = fruit[length-1]
>>> last
>>> last

lal

Or you can use negative indices, which count backward from the end of the string. The
expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.

HEMEALIA R BRE, REMEBENFRFERREBREBULA. frut[-1]x PRk A4
REE—DFR, fruit[-2]4 HEEE D, BRI 2 H#,

8.3 Traversal with a for loop A for 1§ #1T1E

A lot of computations involve processing a string one character at a time. Often they start at
the beginning, select each character in turn, do something to it, and continue until the end.
This pattern of processing is called a traversal. One way to write a traversal is with a while
loop:

BEZHBEIRBEEZEERIMN—NFHERE—NFR, —REBEMLFIR, KREIE
/l\if%, REMARIE, ARE—BIRE, IMHMXEBEEXUWE 7, BE— &K LER
while &% :

index =

while index < len(fruit):
letter = fruit[index]
print(letter)
index = index +

This loop traverses the string and displays each letter on a line by itself. The loop condition
is index < len(fruit), so when index is equal to the length of the string, the condition is false,
and the body of the loop doesn’t run. The last character accessed is the one with the index

len(fruit)-1, which is the last character in the string.

IMEFRE L T BENERFS, AREBIEE—1MNERFE RE—TLERE. BFFHER index

B % E/NFFRE fruit IEI’H:Fch FTLAE index 57 fF & K EAEFM R, KM
T, BHARBMAEITT. RE—TFREFIMEE, index EEfFElen(fruit)-1, XFEk
B2 2FHENRE—TERT.

As an exercise, write a function that takes a string as an argument and displays the letters
backward, one per line.

TEM4I—TFT, BE—TEH, BER—ITFHEHSH, RAEREAFITE—1FHH,
BITETR—T

Another way to write a traversal is with a for loop:

7N —FE R A ERLE for T&3R T -

for letter in fruit:
print(letter)

Each time through the loop, the next character in the string is assigned to the variable letter.
The loop continues until no characters are left.

BREF G, FHEFHT—INFHEBIRMEL L E letter, BEFREHITEIRBFRR
REHERLFLE T

The following example shows how to use concatenation (string addition) and a for loop to
generate an abecedarian series (that is, in alphabetical order).

TENAIFRRTEERzE (FRSBIME) UR— for BFRRER—E £HF5
(RFERRF) .

In Robert McCloskey’s book Make Way for Ducklings, the names of the ducklings are Jack,
Kack, Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

7£ Robert McCloskey B9—A& &0 {Make Way for Ducklings) B4/, /vy FHE FK
JR# : Jack, Kack, Lack, Mack, Nack, Ouack, Pack, #1Quack, TFHEX MEF MK R4
Hih i1 E=F

prefixes = 'JKLMNOPQ'

suffix = 'ack'

for letter in prefixes:
print(letter + suffix)

The output is:

M ROT

Jack Kack Lack Mack Nack Oack Pack Qack

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled. As an
exercise, modify the program to fix this error.

WART, AETEHRMTLS, FABE“Ouack’ “Quack’ L BB T, MM %5, B
—T18F, WEX ML,

8.4 String slices FREIH

A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

FRBHN—EBUHSTI R, MFREREE—BoEU R, Sea—"FHFa%EE

>>> s = 'Monty Python'
>>> s = 'Monty Python'
>>> s[0:5]

>>> s[0:5]

'Monty'

>>> §[6:12]

>>> §[6:12]

'Python'

The operator [n:m] returns the part of the string from the “n-eth” character to the “m-eth”
character, including the first but excluding the last. This behavior is counter intuitive, but it
might help to imagine the indices pointing between the characters, as in Figure 8.1.

[n:m]x MIRIERF, RBEIFFFEHRME Tnd DEISE Tmy /\E’\J*%’-’}, EEFIRN:NE
Ing 4, BFRLESRENE Iml P Mk IREERSTER, BURAEHTER
ENDREFFERNAGE, MNES.1,

~—-'banana’

ndex 01 2 3 4 5 & Figure 8.1: Slice indices.

If you omit the first index (before the colon), the slice starts at the beginning of the string. If
you omit the second index, the slice goes to the end of the string:

INRIRBEET B —1TRE (ME2ESHENED) , URRBAMNFERFELEBIFIE. N
RIRBEE T R-AZREl, Iha—E22F&E—L

>>> fruit 'banana’
>>> fruit 'banana’
>>> fruit[:3]

>>> fruit[:3]

'ban’

>>> fruit[3:]

>>> fruit[3:]

'ana'

If the first index is greater than or equal to the second the result is an empty string,
represented by two quotation marks:

MRANREINEE, SRNMBEFFET, AADEE|SREERT

>>> fruit 'banana’
>>> fruit 'banana’
>>> fruit[3:3]
>>> fruit[3:3]

[

An empty string contains no characters and has length 0, but other than that, it is the same
as any other string. Continuing this example, what do you think fruit[:] means? Try it and
see.

BFFENLSFH, KEHO0, FRIbzH, HEHMFHEE—H#8,
MuKEI—T, REF frut(] X PR2ALER ? ERRFHKRE,

8.5 Strings are immutable E&FE R A BN

It is tempting to use the [] operator on the left side of an assignment, with the intention of
changing a character in a string. For example:

AREBEHEEXRICAESHERARRAANEFSEN, KBAEENFRHEPIE—

R G RB
NFRF, e :

>>> greeting 'Hello, world!'

>>> greeting Hello, world!'

>>> greeting[0] = J'

>>> greetlng[1=

TypeError: 'str' ob]ect does not support item assignment

The “object” in this case is the string and the “item” is the character you tried to assign. For
now, an object is the same thing as a value, but we will refine that definition later (Section
10.10).

Fobject] B RMERE, XBIEHEFFKEE string, A Fiteml 2I5RX B A
FHEANFRF, BRIKH, —TNHRRB—MaEFRS, BERSEFETESETHEN
Bt X PNE L #ITEm T8,

The reason for the error is that strings are immutable, which means you can’t change an
existing string. The best you can do is create a new string that is a variation on the original:

= E Elah i MRRRFAHRENERIERD, XEREMAEL—IPELFENFR
BIITEM RS, MAZSEMERIL— TS, FFFEUUETIHFRFR#IT—
L.

>>> greeting = 'Hello, world!'

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]
>>> new_greeting = 'J' + greeting[1:]
>>> new_greeting

>>> new_greeting

'Jello, world!'

This example concatenates a new first letter onto a slice of greeting. It has no effect on the
original string.

LEMBIFH, 2t greeting INFRHEHIT TR, AERNT —THFHNEFEIE
BHARGRBFHFEREERMAR R, (FEE : LELZ greeting 3 ???@%E’Mﬁﬁwka
Rk E, BAAIRTH,)

8.6 Searching ¥

What does the following function do?
TEHXPMHBZ T4 7

def find(word, letter):

index = 0
while index < len(word):
if word[index] == letter:

return index
index = index + 1
return -1

In a sense, find is the inverse of the [] operator. Instead of taking an index and extracting the
corresponding character, it takes a character and finds the index where that character
appears. If the character is not found, the function returns -1.

HEE, find W, LR, BHAESREMNYzE, AESEZERSIAE
TEHXSW‘}EE’\J 7, ﬁ'ﬁé?ﬁTéﬂlE AE—PNEFELEHINERFHAMNERSIMLE, NRF
FEREHIRE, HEHHRE

This is the first example we have seen of a return statement inside a loop. If word[index] ==
letter, the function breaks out of the loop and returns immediately. If the character doesn’t
appear in the string, the program exits the loop normally and returns -1.

XA E’J"k—/\ B2 A FIEARARAF, f0Rword[index]% Fletter, ><§5I
Bk EFRIIZLRE], MRFRAEFFEREMEHN, EFREERBERFAERD

This pattern of computation—traversing a sequence and returning when we find what we are
looking for—is called a search. As an exercise, modify find so that it has a third parameter,
the index in word where it should start looking.

E it EARE G — N F R EREI AN B R A AR AHEERT .
WA, BR—T find B, MAB=DTSY, ITSH Y EHFARNOFREMAE

8.7 Looping and counting f&*r i+ %X

The following program counts the number of times the letter a appears in a string:

TEHXMEFHETFHE a E— N FREPHABRE

word = 'banana'

count = 0

for letter in word:
if letter == 'a':
count = count + 1
print(count)

This program demonstrates another pattern of computation called a counter. The variable
count is initialized to 0 and then incremented each time an a is found. When the loop exits,
count contains the result—the total number of a’s.

—RBFETRT 38—+ E&ER, Wi+, T = count AIB1E 40, REBREF
FFEHFHEI— a, FLik count N1 HFEFREM R, count FAEE T a Ha B8R
.

As an exercise, encapsulate this code in a function named count, and generalize it so that it
accepts the string and the letter as arguments. Then rewrite the function so that instead of
traversing the string, it uses the three-parameter version of find from the previous section.

W% 5, ELEANKLSHEEE—DEU count WEREH, Zb—T, —BiLERE
AFFFENFEEHSE.

REBEE—TXMEY, ZRTHLEEHBNFHES, MERAL—FHAIN=F
AR find B

8.8 String methods =& & 4%

Strings provide methods that perform a variety of useful operations. A method is similar to a
function—it takes arguments and returns a value—but the syntax is different. For example,

the method upper takes a string and returns a new string with all uppercase letters. Instead
of the function syntax upper(word), it uses the method syntax word.upper().

FRIBIRM T —E7TE, ZETRES#TRZEMNEEF. TEAMERBEELMY, B
BRSHARRREB —NME, iz RZBHAR. i, upper X MNJ3ERM I — D F R
8, BE—1T2EH KEFERFFRER,

BB upper(word)iz &R E, FiEHEEZ word.upper().

>>> word = 'banana'

>>> word = 'banana'

>>> new_word = word.upper()
>>> new_word = word.upper()
>>> new_word 'BANANA'

>>> new_word 'BANANA'

This form of dot notation specifies the name of the method, upper, and the name of the
string to apply the method to, word. The empty parentheses indicate that this method takes
no arguments.

ZMARS ORI ERAT EABNTGELF S upper, ERRXNAENFRENEF
% word, EEESEEEZAN, RRXNHTETERSH,

A method call is called an invocation; in this case, we would say that we are invoking upper
on word.

FER A ARMME—A R (2 BN, hXERENAR, RXER
invocation #1 invoke 3G {TENERR, M cal B EMELE S|, BHXERENKA
A, xMPIFARKRE, AURRREZ RRFEmR.) ; BXE, BnmART
word B upper A%,

As it turns out, there is a string method named find that is remarkably similar to the function
we wrote:

R4 £ mstring H—DNAEUWH find, BRFHME R find A ABEL :

>>> word = 'banana'

>>> word = 'banana'

>>> index = word.find('a')
>>> index = word.find('a')
>>> index

>>> index

In this example, we invoke find on word and pass the letter we are looking for as a
parameter.

ExBEHMART word B find A%, RELETHENEHRNER a EA—1SE,

Actually, the find method is more general than our function; it can find substrings, not just
characters:

wrrkL, XA find AELETMW find METHERRR ; ERNRESEHTFR, ZREHT
FFes -

>>> word.find('na')
>>> word.find('na')
2

By default, find starts at the beginning of the string, but it can take a second argument, the
index where it should start:

BIAERT find TEMFRFENTF LR EH, TIAULE—TEZNSY, LEMIE
ELLE &

>>> word.find('na', 3)
>>> word.find('na', 3)
4

This is an example of an optional argument; find can also take a third argument, the index
where it should stop:

B NARSHEPTF ; find FEZEEBB=TSH, JLUEE S L IEWLE :

>>> name = 'bob'
>>> name = 'bob'
>>> name.find('b', 1, 2)
>>> name.find('b', 1, 2)

This search fails because b does not appear in the index range from 1 to 2, not including 2.
Searching up to, but not including, the second index makes find consistent with the slice
operator.

EMEREUT, B b HFEEERINE2ETSIE2HFRD R En, ERIIEENE
ENETEFHREINAMAE, BFRSHERMAE, XRLE find TESE R EERFE—

8.9 The in operator = EH%F in

The word in is a boolean operator that takes two strings and returns True if the first appears
as a substring in the second:

in IMEAEFRBRFPE—DOLRER, EBANFERES, NRAENFREN
FEMES, MROE, &k :

>>> 'a' in 'banana'
>>> 'a' in 'banana'
True

>>> 'seed' in 'banana'
>>> 'seed' in 'banana'
False

For example, the following function prints all the letters from word1 that also appear in
word2:

EANEF, TEEKEE ~FTE R TE word1F] word2Z A HH s IF /-

def in_both(wordil, word2):
for letter in wordi:
if letter in word2:
print(letter)

With well-chosen variable names, Python sometimes reads like English. You could read this
loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the second) word, print
(the) letter.” Here’s what you get if you compare apples and oranges:

#HIFF 248, Python Btz EMBREZELRS, Riz— TXMER, FBEX
m, [HE— word ¥HHE—PFRletter, MR XPFRBIEE = word K H
M, FIHEXNFER letter, J

>>> in_both('apples', 'oranges')
>>> in_both('apples', 'oranges')
aes

8.10 String comparison FE&F & st kb

The relational operators work on strings. To see if two strings are equal:
XRzEARFSTFFRERGEETH, LLNATUEERA N FREZTIEEF

if word == 'banana':
print('All right, bananas.')

Other relational operations are useful for putting words in alphabetical order:

HMMX Rz BT LCRBFRHSRBFERIAFHES

if word < 'banana':

print('Your word, ' + word + ', comes before banana.')
elif word > 'banana':

print('Your word, ' + word + ', comes after banana.')
else:

print('All right, bananas.')

Python does not handle uppercase and lowercase letters the same way people do. All the
uppercase letters come before all the lowercase letters, so: Your word, Pineapple, comes
before banana.

Python st K/NEFZRMLIEE AN 2 ENBEBAE, fIEXEFZREMENEFEZREZH], I
LU £ iz

Your word, fAf52 Pineapple, #Af&Z =& banana,

A common way to address this problem is to convert strings to a standard format, such as all
lowercase, before performing the comparison. Keep that in mind in case you have to defend
yourself against a man armed with a Pineapple.

—MNRRZA) BT SR ICF R AR, NMERNER, REHE
#ITHR., —EEieRFR, URMMEE—1THA Pineapple K& H EHIRMKHI ZF B
P

8.11 Debugging X

When you use indices to traverse the values in a sequence, it is tricky to get the beginning
and end of the traversal right. Here is a function that is supposed to compare two words and
return True if one of the words is the reverse of the other, but it contains two errors:

EAREIRE L — TN FI PR AN R, FEREEHNTLNERBRARZ, TERXD
ARt m N 237, R—PME 5 —THEFREROE, EXPMHERSFERL

4%

def is_reverse(wordl, word2):
if len(wordl) != len(word2):
return False
i 0
Jj len(word2)
while j > 0O:
if wordi1[i] != word2[j]:
return False
i+1
j-1
return True

i
J

The first if statement checks whether the words are the same length. If not, we can return
False immediately. Otherwise, for the rest of the function, we can assume that the words are
the same length. This is an example of the guardian pattern in Section 6.8.

BN ZAZREATHANKERSE —#H. IRA—H# K, HybhROK, xtRHH
KE, FREANEE—HEK, IBRABTTFIER, THEEFESH HMREL,

i and j are indices: i traverses word1 forward while j traverses word2 backward. If we find two
letters that don’t match, we can return False immediately. If we get through the whole loop
and all the letters match, we return True. If we test this function with the words “pots” and
“stop”, we expect the return value True, but we get an IndexError:

i 0 j 22 3RAI - i ML BIEE 5 %15 word1, T j HEHE /5 %5 word2 IR F 414 3 AN
FREALE, MALZELRER, Rz BNMER, FAEFEEER, miROE,
MR AX NI IR %55 Tpots] 1 Fstopd , HBMNHFLEREROE, BERHH
EFRB43%

>>> is_reverse('pots', 'stop')

>>> is_reverse('pots', 'stop')
File "reverse.py", line , in is_reverse if wordi[i] != word2[j]: IndexError:

{ S— >

For debugging this kind of error, my first move is to print the values of the indices
immediately before the line where the error appears.

A TWREZXMNER, F—IREEHANBITZAIMEZREIME,

while j >

print(i, j) # print here
if wordi[i] != word2[j]:

return False

i=1i+
j=3-

Now when | run the program again, | get more information:
AREFRBRzTHY, BAELEERT :
>>> is_reverse('pots', 'stop')

>>> is_reverse('pots', 'stop')

. IndexError: string index out of range

The first time through the loop, the value of j is 4, which is out of range for the string 'pots'.
The index of the last character is 3, so the initial value for j should be len(word2)-1. If | fix
that error and run the program again, | get:

—RIEFTENHE, jEE4, XBHT Tpots] XNFRHHAEE T GFEE
ki iZe0-3) » =E— 1R8I izeE3, ALl j NG AE &%= len(word2)-1,

>>> is_reverse('pots', 'stop')
>>> is_reverse('pots', 'stop')
True

This time we get the right answer, but it looks like the loop only ran three times, which is
suspicious. To get a better idea of what is happening, it is useful to draw a state diagram.
During the first iteration, the frame for is_reverse is shown in Figure 8.2.

BORBMEEI T EHNER, BUTIEEHFRRET=R, xB8271R. A THFEHEAFIE
2EE, BNTUBE—MNMREAE, EE—RERNIIES, is_reverse BIMEZRUI A 8.2Ff
j__

wordl —= ‘pois’ woml2 —=- “sfpp’

i—=0 j— 3

Figure 8.2: State diagram.

| took some license by arranging the variables in the frame and adding dotted lines to show
that the values of i and j indicate characters in word1and word2. Starting with this diagram,
run the program on paper, changing the values ofi and j during each iteration. Find and fix
the second error in this function.

Folit BT SERPIRINE AR, iMj]E 8 ~TEAYword1and word2E #4 1] 4,

MDA iz THRER, X, B EaIfJEE—RERITE, 2 aFHfRIIERHBHm=
R %o

8.12 Glossary Ri&%I3K

object: Something a variable can refer to. For now, you can use “object” and “value”
interchangeably.

SR —NMERESIERR AT, BREIALE, RATLUERME T BIFH — 35 RIEBH,
sequence: An ordered collection of values where each value is identified by an integer index.
Fo : —RINERNEFH, 8—1MaHlE—1TE—HNBHFS

item: One of the values in a sequence.

ToER ¢ AR AR S R — .

index: An integer value used to select an item in a sequence, such as a character in a string.
In Python indices start from O.

T« —PNERE, ARER—NTFIHHNFE— N tHR, WNEFFEEmMER—
NERF, £ Python EEZRF|MOFFIA 2L,

slice: A part of a string specified by a range of indices.
PR FRBEN—ESD, @it — P3R5 RIS,

empty string: A string with no characters and length 0O, represented by two quotation marks.
EFRFE RBFHNFRE, KEH0, AATEEI5RTR.

immutable: The property of a sequence whose items cannot be changed.
AATEW : —PNFIIRETE TR BRI T B 5,

traverse: To iterate through the items in a sequence, performing a similar operation on each.
B E—DFEIHRERR B — N R AT EMALLE R iR,

search: A pattern of traversal that stops when it finds what it is looking for.
BXR . —MEHHER, HRIERHNASHIERE L,

counter: A variable used to count something, usually initialized to zero and then
incremented.

U —MARATEMABRENTE, —KRAIKIEH0, REFREIE,
invocation: A statement that calls a method.

AR ARAERER,
optional argument: A function or method argument that is not required.

T B - — N EUHE R — LSRR T, FUTHH,

8.13 Exercises % 7]

Exercise 1 %431

Read the documentation of the string methods at here. You might want to experiment with
some of them to make sure you understand how they work. strip and replace are particularly
useful.

http://docs.python.org/2/library/stdtypes.html#string-methods

ik RBRXRTFFREBNE, MEFSBEXXEP—EHE, RBERIFEBECHHNE
L. Lb#n strip # replace #34% 318 H.

The documentation uses a syntax that might be confusing. For example, in find(sub|, start],
end]]), the brackets indicate optional arguments. So sub is required, but start is optional, and
if you include start, then end is optional.

XAEBEEE T REANIFIEAE, tINTEfind XN AESR, ARESRI TGS, fild
sub B ABISEL, {H start vl 8y, WMRIRE ST start, end 2 &I T,

Exercise 2 #4.-]2

There is a string method called count that is similar to the function in Section 8.7. Read the
documentation of this method and write an invocation that counts the number of 'a's in
'banana’.

FREBDAZEM count, 54117E8. 7B count ERERME L, 12— TR DAER
XH, RARE—MEBAZXNAENNRD, 4it—F banana XM %334 a HABRE

Exercise 3 4.°]3

A string slice can take a third index that specifies the “step size;” that is, the number of
spaces between successive characters. A step size of 2 means every other character; 3
means every third, etc.

FRHBUVRALUERB=TRE], AT KKER ; T RNEBUEIMFFIAYE R, —
MK AHHERMEER—TIR—1FR ; SHNEERREERIB=T, £ H,

>>> fruit = 'banana'
>>> fruit = 'banana'
>>> fruit[0:5:2]
>>> fruit[0:5:2]
'bnn'

A step size of -1 goes through the word backwards, so the slice [::-1]generates a reversed
string. Use this idiom to write a one-line version of is_palindrome from Exercise 3.

FRINRY-1, BREMZEF=IFRFH, UL DMIRARSER— D EFHFR
BT,

FEAXNAERS 5 =4FMis_palindrome B — PN — 1T BHIRA,

Exercise 4 4. >)4

http://docs.python.org/2/library/stdtypes.html#string-methods

The following functions are all intended to check whether a string contains any lowercase
letters, but at least some of them are wrong. For each function, describe what the function
actually does (assuming that the parameter is a string).

TEHXERHEHBRXEALE —INFHEETI2E2/NEFE, BNEAPEERERS
B, R —TEIMRBEENTY (REASHRE—INFHH) .

def any_lowercasel(s):
for ¢ in s:
if c.islower():
return True
else:
return False
def any_lowercase2(s):
for ¢ in s:
if 'c'.islower():
return 'True'
else:
return 'False'
def any_lowercase3(s):
for ¢ in s:
flag = c.islower ()
return flag
def any_lowercase4(s):
flag = False
for ¢ in s:
flag = flag or c.islower()
return flag
def any_lowercase5(s):
for ¢ in s:
if not c.islower():
return False
return True

Exercise 5 4. >)5

A Caesar cypher is a weak form of encryption that involves “rotating” each letter by a fixed
number of places. To rotate a letter means to shift it through the alphabet, wrapping around
to the beginning if necessary, so 'A’ rotated by 3 is 'D’ and 'Z’ rotated by 1 is ’A.

NMBRR—WE 2MINE AL, ANAERIEBNEE#1TRENENBL. t—1
FREBMAMSIECRIBEFERNAFE R AT &, MRIREMBASMITLERIR
BIhrE, [Al #A43si2 DS, m Izl #4182 Al 7,

To rotate a word, rotate each letter by the same amount. For example, “cheer” rotated by 7 is
“jolly” and “melon” rotated by -10 is “cubed”. In the movie 2001: A Space Odyssey, the ship
computer is called HAL, which is IBM rotated by -1.

Bt — MR #1780, BIEENFEBBHRENHRE, LW Tcheerd x4 #9617
2 Fjollyd , ™ Fmelond BAI-108t2 Tcubedd . 7Ew.% (2001 KZEEHE) +, &
fioRY &, ps Al HAL, BLZ IBM 41,

Write a function called rotate_word that takes a string and an integer as parameters, and
returns a new string that contains the letters from the original string rotated by the given
amount.

BE—"1%&M rotate_word IR, EW—NFREMN—NIEF H S, ROEFRFRH
B2 ER ARSI F R &,

You might want to use the built-in function ord, which converts a character to a numeric
code, and chr, which converts numeric codes to characters. Letters of the alphabet are
encoded in alphabetical order, so for example:

REF2HEBLRNERI ord, BIRFR#HREBENRS, KEEEN chr 2AXIEBEH @
K2tk FRF. FREKXRPNFERE L E2XIREFERPEEBREFE T, FTLUA0TRT

V1N

>>> ord('c') - ord('a')
>>> ord('c') - ord('a')
2

Because 'c' is the two-eth letter of the alphabet. But beware: the numeric codes for upper
case letters are different.

c BFERAMNE 20 N GFFE : MOFFIEEIR) HIE, ALl bl RE2, BF
R AEFANBEaRAZMNENF—H#H,
Potentially offensive jokes on the Internet are sometimes encoded in ROT13, which is a

Caesar cypher with rotation 13. If you are not easily offended, find and decode some of
them. Solution.

M ERZ BB LKA ZR ROTI3MEN, HMEBA1SHINHE D, WRIRF
ANE, H—TxEZLMT—TE, #£HK3.

http://thinkpython2.com/code/rotate.py
http://thinkpython2.com/code/rotate.py

Chapter 9 Case study: word play EfI%# 5 : %
3] il1F 32X,

This chapter presents the second case study, which involves solving word puzzles by
searching for words that have certain properties. For example, we’ll find the longest
palindromes in English and search for words whose letters appear in alphabetical order. And
| will present another program development plan: reduction to a previously-solved problem.

AERNATBARAZF D, Z—ROAPSRITAEREFELEREN 27 %)E
ko AN, FMERLAEEZPRKMOGE, AREERIPBLERIRL[RRFEEYFREY
#i7, MARAH—MINBRFFTF L+ : BEFENE 2 MEMEE, ®RIFIHZR
B9) R

9.1 Reading word lists iz IXFRFFIR

For the exercises in this chapter we need a list of English words. There are lots of word lists
available on the Web, but the one most suitable for our purpose is one of the word lists
collected and contributed to the public domain by Grady Ward as part of the Moby lexicon
project (see Here). Itis a list of 113,809 official crosswords; that is, words that are
considered valid in crossword puzzles and other word games. In the Moby collection, the
filename is 1138090f.fic; you can download a copy, with the simpler name words.txt, from
Here.

AEH W, aNBEA—1MRERLIFK. WEBEREZ, TEREAEMNMNIKFR
EEEMIEH, EitF Grady Wardix 1433 5C3KR, X EMobyis Hi+ X —E92 (&t
w3) o XE—P113, 809N NINKFEREK ; hEt B A A LA F = ki =k LA
REMFHFRB £15, £ Moby B35 L B, i%:8RBIXHH 4 1138090f fic ; {RAT
DT #—melx, xBLF 4K words.txt T, TFHxibiutExE,

This file is in plain text, so you can open it with a text editor, but you can also read it from
Python. The built-in function open takes the name of the file as a parameter and returns a
file object you can use to read the file.

BN HRBLNAR, AMUMRATLAAX AR gESEITHA—T, TdtBa LA Python i
B, Python RiE T —lopen MIEKEL, EINXHRMSE, REOI—NXHETR, {RA
LR E Rz I,

>>> fin
>>> fin

open('words.txt")
open('words.txt")

http://wikipedia.org/wiki/Moby_Project
http://thinkpython2.com/code/words.txt
http://wikipedia.org/wiki/Moby_Project
http://thinkpython2.com/code/words.txt

fin is a common name for a file object used for input. The file object provides several
methods for reading, including readline, which reads characters from the file until it gets to a
newline and returns the result as a string:

fin B— MNRAERRTHANXENERRZT. XN RIBHTHFLMIBAE, S
FERITE, XIMAER iR ATHN—ETERILE, AREIRHNABESYFZRE
RO :

>>> fin.readline()
>>> fin.readline()
'aa\r\n'

The first word in this particular list is “aa”, which is a kind of lava. The sequence \r\n
represents two whitespace characters, a carriage return and a newline, that separate this
word from the next. The file object keeps track of where it is in the file, so if you call readline
again, you get the next word:

X—=AHPNBE—MamME laal 7, XZ—MWEE (F&F : "aa’RERRH L,
Zffa, FAR#EAREmARENEER. FERARZHE S 1), #ROEMRXDE,
FEMEEERBZN) , FEHIREEN\A\N NEERAREEATHLFR, —TEE%E, —
PRAT, BHIEZDEFIAMT—D L5 DRITE,

XA R F XD R ARG PIAE, FTLLTRIRE A readline Bet &, RLEE
B[ET—MAT :

>>> fin.readline()
>>> fin.readline()
'aah\r\n'

The next word is “aah”, which is a perfectly legitimate word, so stop looking at me like that.
Or, if it's the whitespace that’s bothering you, we can get rid of it with the string method strip:

T—1iARE laahd , FREZR—NEMAMNE L, TEEFRGERM. 3H0RELF
FELMRRG, A LIRIMEkEIEE, AFRFHEN strip 773RE1H ¢

>>> 1line = fin.readline()
>>> 1line = fin.readline()
>>> word = line.strip()
>>> word = line.strip()
>>> word

>>> word

'aahed'

You can also use a file object as part of a for loop. This program reads words.txt and prints
each word, one per line:

£ for EHFAHEATLUMERSXE R, TEHXPNEFRZINED words.ixt XXH, AEET
BMH—1NE

fin = open('words.txt")
for line in fin:
word = line.strip()
print(word)

9.2 Exercises %4 7]

There are solutions to these exercises in the next section. You should at least attempt each
one before you read the solutions.

TEXEL JBEROAND, TIIRRHFEEERZIAEECHEN4 I8 K—T.

Exercise 1 %4 -] 1

Write a program that reads words.txt and prints only the words with more than 20 characters
(not counting whitespace).

B—NEF 2 words.txt, RAER#HHBiT FREKENRE (XM KEAREFEZELF
F) .

Exercise 2 %42

In 1939 Ernest Vincent Wright published a 50,000 word novel called Gadsby that does not

contain the letter “e”. Since “e” is the most common letter in English, that’s not easy to do.

E1939%F, EREFREBERH XHF XRFE2EL—R5AFMN (BXH) , BEmE
E—"1"FHe, AHEHEED e RBRANRMEZNFER, FIUXEBARBEZN,

In fact, it is difficult to construct a solitary thought without using that most common symbol. It
is slow going at first, but with caution and hours of training you can gradually gain facility.

Ex b, TMEAZELNFER, ZEREH—162WEBE —FHREIE, Faifm—
%,&ﬁn¢¢ﬁ%M%ZE,WMLﬁmMﬂTO

All right, I'll stop now. Write a function called has_no_e that returns True if the given word

doesn’t have the letter “e” in it.
T, BAHERT,
—NEZFUHY has no_e BIEKEL, WMIRL TR LIASH e FLIREIE, TN AR,

Modify your program from the previous section to print only the words that have no “e” and

compute the percentage of the words in the list that have no “e”.

B—TL—FHRERERS, teRITEH£RAEE e Bi5:C, HHES% I —TXLE;
SCIE B BRI B o A,

Exercise 3 4°]3

Write a function named avoids that takes a word and a string of forbidden letters, and that
returns True if the word doesn’t use any of the forbidden letters. Modify your program to
prompt the user to enter a string of forbidden letters and then print the number of words that
don’t contain any of them. Can you find a combination of 5 forbidden letters that excludes
the smallest number of words?

BE—1EW avoids BIEREL, BR— D2 AN 1M 2AFZRAGHNENS, IRLFS
BZFHEANEMAFESE, sROE,

{I%EQ—"FEF%{JC‘L%, RTA P A— T ERAFEAGHNTRES, AEMATSAERLEF
R 8E, RERESNMRERFTRASR, B 8mds?

Exercise 4 4] 4

Write a function named uses_only that takes a word and a string of letters, and that returns
True if the word contains only letters in the list. Can you make a sentence using only the
letters acefhlo? Other than “Hoe alfalfa?

—A%Mw%omm 8, BR—DN2AMN—NFERFERER, NRLAREERFR
EhMNFER, FhREE, {ReEi A acefhlo X JLNFRYEAF 24 ? FHE X% FHoe
alfalfal ?

Exercise 5 4.)5

Write a function named uses_all that takes a word and a string of required letters, and that
returns True if the word uses all the required letters at least once. How many words are
there that use all the vowels aeiou? How about aeiouy?

—NEFluses allIEKE, BR— DA — M EFRBASHFRS, MR L5
M = FRAASHHNFEREDVEET —RFROE, 2402 8BR THENTERER

aeiou ? aeiouydJlg ?

Exercise 6 4] 6

Write a function called is_abecedarian that returns True if the letters in a word appear in
alphabetical order (double letters are ok). How many abecedarian words are there?

BE— 1% F0is_abecedarianBJER#, R %A FREARIRBFEERINFH R
OE (E2FBHERFN) . BEZVXHMNEE?

9.3 Search &3z

All of the exercises in the previous section have something in common; they can be solved
with the search pattern we saw in Section 8.6. The simplest example is:

RIRIBIARLE 4 3 BE — LAl & « FAT LR T7ES.6% it IR EMR, THZ—
& 4 LB F

def has_no_e(word):
for letter in word:
if letter == 'e':
return False
return True

[Tl

The for loop traverses the characters in word. If we find the letter “e”, we can immediately

return False; otherwise we have to go to the next letter. If we exit the loop normally, that

means we didn’t find an “e”, so we return True.

N for @3B H T 28 MATEFER, WMRHE T FERe, FIELREMR ; SNFEIT—
/l\io WMREFERETEZR, BHRERHINREE e, POROAIE,

You could write this function more concisely using the in operator, but | started with this
version because it demonstrates the logic of the search pattern. avoids is a more general
version of has_no_e but it has the same structure:

IRETLAMER in 2 &5, BXPMHBESERE, B2AUA— 1B ERABNERE, 4
T A REXRE EFI‘\EO

avoids 2— BAMAMhas no eFEMIZ M, THZHE—HH

def avoids(word, forbidden):
for letter in word:
if letter in forbidden:
return False
return True

We can return False as soon as we find a forbidden letter; if we get to the end of the loop,
we return True. uses_only is similar except that the sense of the condition is reversed:

REFI T RZAFEMAILLIELRER ; 1Rz TR TEFRE, REE.

uses_only5Z#l, TIFRFHSZERTME,

def uses_only(word, available):
for letter in word:
if letter not in available:
return False
return True

Instead of a list of forbidden letters, we have a list of available letters. If we find a letter in
word that is not in available, we can return False. uses_all is similar except that we reverse
the role of the word and the string of letters:

KRABE—IMRAFRIIR, BNZRA—INTAFRIIR, ORELAPLATE
ARFRSIRPH, BMREERT,

uses_all X NS BB, T3 FMiHT 2ANFRFHENAR -

def uses_all(word, required):
for letter in required:
if letter not in word:
return False
return True

Instead of traversing the letters in word, the loop traverses the required letters. If any of the
required letters do not appear in the word, we can return False. If you were really thinking
like a computer scientist, you would have recognized that uses_all was an instance of a
previously-solved problem, and you would have written:

BORFHEBEER L ATPNAEFTE, BFELTEEENTE. IREGEMAEEFTR
RAEE L FREFR, FHREER, MREELGEFHENRZR—FBET, RElrizd
% % A T uses_all@ st 2 RIFKRMAR RS P B — 126, RE4BdxMAT :

def uses_all(word, required):
return uses_only(required, word)

This is an example of a program development plan called reduction to a previously-solved
problem, which means that you recognize the problem you are working on as an instance of
a solved problem and apply an existing solution.

ZELE— MR L ANER, SERMEREHNE & MMEE, &REILIEIFRE
P, BREMLAEERYNFEEEARRTINFEAN—1%26, AUBAEsRE
R RFRAR,

9.4 Looping with indices # 25| 1&r

| wrote the functions in the previous section with for loops because | only needed the
characters in the strings; | didn’t have to do anything with the indices. For is_abecedarian we
have to compare adjacent letters, which is a little tricky with a for loop:

FENETHRE T EMA for BAREEY, Ry AFEFFERNFR ; ZMAFT
BEXEE,

{His_abecedarianiX MR, FMEExtbEEN & NFR, FrLLE for T4
BT :

def is_abecedarian(word):
previous = word[0]
for ¢ in word:
if ¢ < previous:
return False
previous = ¢
return True

An alternative is to use recursion:
—MERFHNER BB EBER®)3 :

def is_abecedarian(word):
if len(word) <= 1:
return True
if word[0] > word[1]:
return False
return is_abecedarian(word[1:])

Another option is to use a while loop:

7 —#A %52 while 1&3% :

def is_abecedarian(word):
i=o0
while i < len(word)-1:
if word[i+1] < word[i]:
return False
i = i+1
return True

The loop starts at i=0 and ends when i=len(word)-1. Each time through the loop, it compares
the ith character (which you can think of as the current character) to the i+1th character
(which you can think of as the next).

BARFAT i FF0, AR i FTFlen(word)- 1Mt R R, FRiET BEFAHR, #Bxt
B IiNFR (RALMAREAFR) 58 110 FRF MAET—IFR) .

If the next character is less than (alphabetically before) the current one, then we have
discovered a break in the abecedarian trend, and we return False.

MEF—ANEFHUNTEN (FRRAFAFELHTHNE , HiRE AR
BATRRGFT, BHEDRETUT.

If we get to the end of the loop without finding a fault, then the word passes the test. To
convince yourself that the loop ends correctly, consider an example like 'flossy'. The length
of the word is 6, so the last time the loop runs is when i is 4, which is the index of the
second-to-last character. On the last iteration, it compares the second-to-last character to
the last, which is what we want.

MR—EFEFEEEEELAPH, X MARBERET. ¥ THEBFREMRLER
T, AILAZ 239 [flossyd EABIFEXK. #:7 KERZ6, FTLUMBEFRLIERR I &
=4, BRMERHHE-NMIB, AxRE—REFFH, HKRPUIBEHE-MNRE—ITF
&, XERFEHM%T.

Here is a version of is_palindrome (see Exercise 3) that uses two indices; one starts at the
beginning and goes up; the other starts at the end and goes down.

THEZXMNE% 3 38is_palindromefI—hRA, AT HINRE]; — PN EFR—BEEIL
B 3 A —1TMNRKEFBERF#1T,

def is_palindrome(word):

i=0
j = len(word)-1
while i<j:
if word[i] != word[j]:
return False
i=i+1
j=3-1

return True

Or we could reduce to a previously-solved problem and write:

HEBANATLUE P AR R BIERR T IR, REZIHE

def is_palindrome(word):
return is_reverse(word, word)

Using is_reverse from Section 8.11.

X BMis_reverseix MEHEIEHESEHE 11 ¥ #Hit 1A,
9.5 Debugging %
Testing programs is hard. The functions in this chapter are relatively easy to test because

you can check the results by hand. Even so, it is somewhere between difficult and
impossible to choose a set of words that test for all possible errors.

MRXIEFRERN, RENRBERELEERZ MK, RAIMRTLUFE +ERL L
R, BMEWOLL, #3—RI£[ARGERNFAE TN 2, AREAMEMERRE, &
EHE RN EETTRRHIE %

Taking has_no_e as an example, there are two obvious cases to check: words that have an
‘e’ should return False, and words that don’t should return True. You should have no trouble
coming up with one of each.

tetillhas no e, AAFIERARL S : B e ¥ 5 iZRER, 188 e %59
FROE, (RE2BHE/LNX N LKL —TFTHIE,

Within each case, there are some less obvious subcases. Among the words that have an
“e”, you should test words with an “e” at the beginning, the end, and somewhere in the
middle. You should test long words, short words, and very short words, like the empty string.
The empty string is an example of a special case, which is one of the non-obvious cases

where errors often lurk.

AN OXA, B—ERRLBEMBUREDT, ERER e £ H, Rz E/kN 49
P e BET L LRBERPRME, REXX KA. &9, EEFHENE, mEF
R, ZFFHRE—THERM, X NMERRBEZWBAMA N BRHEER,

(& : e, B3 E EME shit, BE%7E, BXRERE, BB
AKRBE, ANAZXNTAJBTIZERE, ARREZEHCRE.)

In addition to the test cases you generate, you can also test your program with a word list
like words.txt. By scanning the output, you might be able to catch errors, but be careful: you
might catch one kind of error (words that should not be included, but are) and not another
(words that should be included, but aren’t).

BRTIRE 2% it IR B2 A, RBAILAR—4 %35 53R 40 words.txt 2 % B3)%
—TRIRERF., B EE—THERNE, RUFeEs g gz, BE—EZE/D :
REFREL AE—FFER 2, BRBT 24—1, LWNEBETAL 288 L3, B
BexapnzaaBiRT 29080,

In general, testing can help you find bugs, but it is not easy to generate a good set of test
cases, and even if you do, you can'’t be sure your program is correct. According to a
legendary computer scientist: Program testing can be used to show the presence of bugs,
but never to show their absence! — Edsger W. Dijkstra

BRI, MR FERFREESBIRINE 42, (BIR Xk B — R 5 SF 80X = A, =X
EZHEMEMRI T RZRHIE X, BREEBREEFASIERM, —060 % 5 B ENR
IR

2R X A LLAERBE bug M1E7E, 1Bk FEERBA bug RETE.

— Edsger W. Dijkstra

9.6 Glossary K27z

file object: A value that represents an open file.
Xt R AR T — T RIS A,

reduction to a previously-solved problem: A way of solving a problem by expressing it as an
instance of a previously-solved problem.

PR o) BN E & MR, 2 RBICATIFREY P 8 - —FER P ENTAE, BrERix
g BRI — P

special case: A test case that is a typical or non-obvious (and less likely to be handled
correctly).

FriARB) - RERHETR L BKANRG, TEBRIEZEMRLE,

9.7 Exercises %4 7]

Exercise 7 4.7

This questionis based on a Puzzler that was broadcast on the radio program Car Talk : Give
me a word with three consecutive double letters. I'll give you a couple of words that almost
qualify, but don’t. For example, the word committee, c-o-m-m-i-t-t-e-e. It would be great
except for the i’ that sneaks in there. Or Mississippi: M-i-s-s-i-s-s-i-p-p-i. If you could take
out those i’s it would work. But there is a word that has three consecutive pairs of letters and
to the best of my knowledge this may be the only word. Of course there are probably 500
more but | can only think of one. What is the word? Write a program to find it. Solution

http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk1.py

I BEF—PiE, X N@EE Y B Car Talk EEEMR:L -
éé\

B—TME=NEsRFENEE, R f—EATFENE:E, BHFFE. 6
0, committee X N¥39, COMMITE, MIRAEZE£MM—) i EE@E, #HEXRT
X7, EMississippi X133 : MISISIP I, MRERLEA | #MEREMREFT., BE D
WEFR=1TEL2FE, MEABRBAOX N TEEM ——DNIHE, YREETRE
rfEABABEZNE, ERRERE—1. BHNAR? ENERRE—TEN3E
Me,

BB

Exercise 8 4] 8

Here’s another Car Talk Puzzler : “| was driving on the highway the other day and |
happened to notice my odometer. Like most odometers, it shows six digits, in whole miles
only. So, if my car had 300,000 miles, for example, I'd see 3-0-0-0-0-0. “Now, what | saw that
day was very interesting. | noticed that the last 4 digits were palindromic; that is, they read
the same forward as backward. For example, 5-4-4-5 is a palindrome, so my odometer could
have read 3-1-5-4-4-5. “One mile later, the last 5 numbers were palindromic. For example, it
could have read 3-6-5-4-5-6. One mile after that, the middle 4 out of 6 numbers were
palindromic. And you ready for this? One mile later, all 6 were palindromic! “The question is,
what was on the odometer when | first looked?” Write a Python program that tests all the six-
digit numbers and prints any numbers that satisfy these requirements. Solution

BN Z— Car Talk i#i& :

BE-—XTEsEBLFES, MITETRERER, MASHERER—#, B2 UHBF
B, #AERE, MAFKR£PiE300, 000RET, FHIIBLRRZES-0-0-0-0-0.

HAXKEIVWEER, BREINENAMAZEXH ; it B ERYE Lz — £,
flEN5-4-4-55h 2 — P EIXE, FAURHEIERTEE: B AlE23-1-5-4-4-5.

37T —REZE, BAUBRFELOXNT., $M0F, "8k +HrES-6-5-4-5-6, i
T—RE, "M EFHEANBFERRXHAT, ELFEELNTAL? X T—RE, B
NN EERZBIXH T |

Bop@mT « RERTHREINERRNER %257
B4 Python 2F3k4& 0 — FATARNAIE, REHE—THEXEZRNEF., #5
(A

Exercise 9 49

http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk1.py
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk2.py
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk2.py

Here’s another Car Talk Puzzler you can solve with a search : “Recently | had a visit with my
mom and we realized that the two digits that make up my age when reversed resulted in her
age. For example, if she’s 73, I'm 37. We wondered how often this has happened over the
years but we got sidetracked with other topics and we never came up with an answer.
“When | got home | figured out that the digits of our ages have been reversible six times so
far. | also figured out that if we're lucky it would happen again in a few years, and if we're
really lucky it would happen one more time after that. In other words, it would have
happened 8 times over all. So the question is, how old am | now?” Write a Python program
that searches for solutions to this Puzzler. Hint: you might find the string method Zfill useful.

Solution

EANANZE— Car Talk 3%, {RALARARZREARR :

, MARE37% 7. BMNFFIMBRLEZR, BREAXFTiE4, BEBHEX

e
N S =,

RKIIRET T B8, REHMNLARNES R REFZo0FH, Fl0, ROBZE73
4
/N

BRxzE, BLxaBaMNERMNNERBEAVRFELZ2E/NRT, Bixk iNEHA
FEizdLEXSE—R, NRBNFFE, MEBE—RXIHBER. #9iE
W, MR EHEEEENR, BL@EET : BAEZ KT ?

B— Python 2, #ER—TIX N0, RER—T : RAEE L AFEFHEM il Hi%
1RE i,

BB

http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk3.py
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk3.py

Chapter 10 Lists 53

This chapter presents one of Python’s most useful built-in types, lists. You will also learn
more about objects and what can happen when you have more than one name for the same
object.

A Bt R Python BERARI—MNE X E : SR, MulEASHhEEES AT
£HND, REaBINRER— M URES M ETRAHLERL %,

10.1 A list is a sequence FIZREIF5

Like a string, a list is a sequence of values. In a string, the values are characters; in a list,
they can be any type. The values in a list are called elements or sometimes .

MFRFEERS, JIRE—RINEaNFS . EFHFEE@R, xLARFH; EIIR
BmE, xLaaURERLREN, —MNIKRPHE—RUHESIRITR, Betiztls)
Ko

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets ([and]):

SIE—DHISIRBEFILMAE R ENAERZEIIRNTEZRALESE SRR !

[’ ’ ’]

['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a list of three strings. The elements
of a list don’t have to be the same type. The following list contains a string, a float, an
integer, and (lo!) another list:

B—MPIFRIT —PHUNER T ELKNIIR, BZPE—THZDFRIH AN
VIE

['spam', ; 5, [10;, 1]

A list within another list is nested. A list that contains no elements is called an empty list; you
can create one with empty brackets, []. As you might expect, you can assign list values to
variables:

SRR AUEE—TIRFAH TR, I IFIRBFIRBUERRIIR,
AEREMTRIFIRUMRZEEIR ; TR A ZN SRS REIL—
fRiGHtERHBE, FIRNETURA T &

>>> cheeses
>>> cheeses
>>> numbers
>>> numbers
>>> empty = []

>>> empty = []

>>> print(cheeses, numbers, empty)
>>> print(cheeses, numbers, empty)
['Cheddar', 'Edam', 'Gouda']

[42, 123]

[]

['Cheddar', 'Edam', 'Gouda']
['Cheddar', 'Edam', 'Gouda']
[42, 123]
[42, 123]

10.2 Lists are mutable 7R = {EXK

The syntax for accessing the elements of a list is the same as for accessing the characters
of a string—the bracket operator. The expression inside the brackets specifies the index.
Remember that the indices start at O:

EESIRTRNZEMMNE I FRHEPNFRH—H-AAERSEe BT T. AES
N FRARBERBIMLE, —EEiefE, Python EMEFFIE+EB

>>> cheeses[0]
>>> cheeses[0]
'Cheddar'

Unlike strings, lists are mutable. When the bracket operator appears on the left side of an
assignment, it identifies the element of the list that will be assigned.

MFERFEARNZE, JIREALUERN, HHESEZEFRE—TRMEE0FS M0
iHE, BRIE RAIERTIRITREF IR A,

>>> numbers = [42, 123]
>>> numbers = [42, 123]
>>> numbers[1] = 5

>>> numbers[1] = 5

>>> numbers

>>> numbers

[42, 5]

The one-eth element of numbers, which used to be 123, is now 5. Figure 10.1 shows the
state diagram for cheeses, numbers and empty:

FlZ& numbers BIEE T1] NITRZAEIE123, MEWHA5T .

B10.1B7R T cheeses. numbers F1Z2F R A7 :

numbers = 0 —s= 42

amply = I:I

Figure 10.1: State diagram.

Lists are represented by boxes with the word “list” outside and the elements of the list inside.
cheeses refers to a list with three elements indexed 0, 1 and 2.numbers contains two
elements; the diagram shows that the value of the second element has been reassigned
from 123 to 5. empty refers to a list with no elements.

XENIREAI7 T Mist] W=NMNEFRTE, EFAENRIRNEE, EFHH
MEFRITHET., cheese E—MNEHO, 1, 2=1MTHEMFIIKR, numbers BEHNTTHE ;
A RRAS TN TR EMI23MEFT® A A5, empty @ — N A EETTHRHZEIIXK,

List indices work the same way as string indices:
IRBFRBI M FRRNFRBINRNE— 417 :

* Any integer expression can be used as an index.
ERN—PERERA N, AALAREYRSIH%S.

* If you try to read or write an element that does not exist, you get an IndexError.

INRARXE 3 MHEBEA— N EFENIRTR, (KB —1RE14%

IndexError,
* If an index has a negative value, it counts backward from the end of the list.
MR—IHRBIZ 1, BERBERMINIRKERRIEIRFE 8 £ HEx mHAIE,
The in operator also works on lists.

FEHRAPWALUER in &5,

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses

>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

>>> 'Brie' in cheeses

False

—

10.3 Traversing a list & 5 —N5I13&

The most common way to traverse the elements of a list is with a for loop. The syntax is the

same as for strings:

B H—NRAPAETRNRERNEE for 18R T, X for IBAMBAMNTEREH—
NEF R HERANE — H ML

for cheese in cheeses:
print(cheese)

This works well if you only need to read the elements of the list. But if you want to write or
update the elements, you need the indices. A common way to do that is to combine the built-
in functions range and len:

MRERBER ™ —TFAKRTHR, LEAXMARSAT., BNREEBEANEETH
RETTR, RreBERARS, — KK, XFEZEANPANERKE range # len B L
SEER -

for 1 in range(len(numbers)):
numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number of elements in
the list. range returns a list of indices from 0 to n—-1, where n is the length of the list. Each
time through the loop i gets the index of the next element. The assignment statement in the
body uses i to read the old value of the element and to assign the new value.

BNMEFE A TR, REtBNTHREBAITTEH., len TNHBURLOIVZINRFP TR
B E, range REIMEFIFKH—FRFIZFRE], MOEIn-1, n AEBBENIRHVKET,
RIEAEHE, | HREE T —DNTRNESIME. EEFERAIR 4208 REB R |
184 FRBIK %2 uHRBIAE, #TERARERITEL ZTHR,

A for loop over an empty list never runs the body:

Z255REY for fE3RH, TEFARKZAREITH

for x in []:
print('This never happens.')

Although a list can contain another list, the nested list still counts as a single element. The
length of this list is four:

REFIRPALUSHF 5 H—DIK, BEIMPPRNDZIREARZHEF—T TR,
T TERX MNIIREIKEZES

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq']l, [1, 2, 3]]

10.4 List operations 55Kz E&F

The + operator concatenates lists:

NS+ ERA LHBIIRBHEE—& :

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

[1,

~ S~ S~ =
—a

[N N e N N N |
+ +~ ~ ~ =
o

O0O0O0TcCTY O

~
~
~
~
—_

The * operator repeats a list a given number of times:
ES* z HRFT IR ESEERIRE

>>> [0]
>>> [0]
[I ’ 4]
>>> 1,
>>> 1,

[’ 4 r ’ ’ r ’ 4]

The first example repeats [0] four times. The second example repeats the list[1, 2, 3] three
times.

B—DBIFh, [0XMNINRFEEEMR, BZNEIFIBIIRNM2IEE T =R,

10.5 List slices 3Rt K

The slice operator also works on lists:

PR T IR EIFISR L

>>>
>>>
>>>
>>>

t =
t =
t[1:3]
t[1:3]

—r—
v

o,

ICI]

>>> t[:4]
>>> t[:4]
[Ial’ Ibl,
>>> t[3:]
>>> t[3:]
['d',

If you omit the first index, the slice starts at the beginning. If you omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of the whole list.

AR EEH, MRMFEETHE IR, DAMEMLTTIE. NREETHE =D,)
FRe—EEERE, FTUMRMIER MERERT, I MIFA2ENIIRB— 1 EH|
TO

>>> t[:]
>>> t[:]
[Ial, Ib

Since lists are mutable, it is often useful to make a copy before performing operations that
modify lists. A slice operator on the left side of an assignment can update multiple elements:

AHHRZALMENH, PIUE#1TE BERIIRZA, BIMEFREH2ER

398

REQ

thF iz BERREIR a3 AP FSE L BIRHERR At B DR S IT R

>>> t = ['a', lbl, ICI, ldl, 'e', Ifl]
>>> t = ['a', lbl’ ICI, ldl, lel Ifl]
>>> t[1:3] = ['x', 'y']

>>> t[1:3] = ['x', 'y']

>>> t

>>> t

[Ial, IXI, lyl, ldl, IeI, I.FI]

10.6 List methods %R AL

Python provides methods that operate on lists. For example, append adds a new element to
the end of a list:

Python A #RIEFIRIBE TR Z AL, La0, append BLAILAIEFIRKRERIMN—DFHRITT
%=

>S> t = [lal, lbll ICI]
>S> t = [lal, lbl, ICI]
>>> t.append('d")

>>> t.append('d')

>>> t

>>> t

[lal, Ibll ICII ldl]

extend takes a list as an argument and appends all of the elements:

extend 3 5 —MNIIRMBE, ARBRIEMBNTRANMNE—NIIKRLE,

>>> tl = [Iall lbl, ICl]
>>> tl = [Iall lbl, ICl]
>>> t2 = [Idl, lel]

>>> t2 = ['d', 'e']

>>> tl.extend(t2)

>>> tl.extend(t2)

>>> t1

>>> t1

[lal, Iblr ICl, ldI, lel]

This example leaves t2 unmodified.
EFExNFIFH, 228 BENRT,
sort arranges the elements of the list from low to high:

sort BIIKRHHTRMEEE (FET : TERIFFHEIRIR ASCI R K/NMNE]
R) HEB -

>>> t = [ldl, ICI, IeI, lbl, lal]
>>> t = [ldl, ICI, IeI, lbl, lal]
>>> t.sort()

>>> t.sort()

>>> t

>>> t

[lal, Ibl[lCl, Idll lel]

Most list methods are void; they modify the list and return None. If you accidentally write t =
t.sort(), you will be disappointed with the result.

AEHINKNFEERITIREER ; X LEFEExFIFR#ITIESR, ROMWEZE, NRMER
TINDEBEHT — t=tsort(), BEIMLERTALIRERE,

10.7 Map, filter and reduce 7R ZEEMN =Fhiz &

To add up all the numbers in a list, you can use a loop like this:

EBRINRPAERANEE, RAIULBETEIHEHN—NMEFREE AN :

def add_all(t):
total = ©
for x in t:
total += x
return total

total is initialized to 0. Each time through the loop, x gets one element from the list. The +=
operator provides a short way to update a variable. This augmented assignment statement,
total += x is equivalent to total = total + x .

total B9#I8R1E 40, BREFMeHE, x BBEINRP—P RN G, +=X)iz EFFE
FTEN—MMEE, IPNzEFEY BT wEz4a, total += x TLZFR T total = total +x

]

As the loop runs, total accumulates the sum of the elements; a variable used this way is
sometimes called an accumulator.

MEEEFME (T, total RRBTAAIETTRENLE ; xMTEHUHMR (=5F) M.

Adding up the elements of a list is such a common operation that Python provides it as a
built-in function, sum:

BIRFPFETRINERE—MREANEZSE, AL Python IR T REREKE sum :

>>t = [1, 2, 3]
>>> t = [1, 2, 3]
>>> sum(t)
>>> sum(t)

An operation like this that combines a sequence of elements into a single value is
sometimes called reduce.

B—RIINKRTHRAGK—T £ EHNEE, BUHE reduce (XN #EZHANER) .

Sometimes you want to traverse one list while building another. For example, the following
function takes a list of strings and returns a new list that contains capitalized strings:

NERBAER—DF RS
LEREFRFHERBIFTIIER

BRHRBII—NIRFEE % 5 — MR, LN TEA

X
xR, MAEFHHLAHAAREFRAKDN, AERE—DX

def capitalize_all(t):
res = []
for s in t:
res.append(s.capitalize())
return res

res is initialized with an empty list; each time through the loop, we append the next element.
So res is another kind of accumulator.

res B9#IIE 1A A —DNEIIR ; BRFEAH R, BMNEIET—1TRE append FHiEHE
tE, fillres BER 5 A —FHRINZZ T,

An operation like capitalize_all is sometimes called a map because it “maps” a function (in
this case the method capitalize) onto each of the elements in a sequence.

& _LE X Meapitalize_all iz EHUHE— N map (£:9B2BAME) , By xFHmER
HE—H# GzflF+=2 capitalize XM AE) wAE—TFIHHENTRL,

Another common operation is to select some of the elements from a list and return a sublist.
For example, the following function takes a list of strings and returns a list that contains only
the uppercase strings:

FH—ME Rz BEEMIIRPI—LETR, AERE—MRASIKR. L, TEHHE
BER—ITFRHHIR, RARRO—TMHEHPRESAEFRNFRFEFAMRBISIEK

def only_upper(t):
res = []
for s in t:
if s.isupper():
res.append(s)
return res

isupper is a string method that returns True if the string contains only upper case letters.
isupper E— N FREAZE, IRFREFRISAEFERRROE,

An operation like only_upper is called a filter because it selects some of the elements and
filters out the others.

only upper X ##yiz Bl filter (itigssRR) , BAx iz B HEEN TR,
kiR EAMA,

Most common list operations can be expressed as a combination of map, filter and reduce.

HHANSIRz EE AT LIRRA map. filter L& reduce B4 A,

10.8 Deleting elements #IfRTc3=

There are several ways to delete elements from a list. If you know the index of the element
you want, you can use pop:

M—DBNRARRRITRE LI AL, NRIRAEIRE #FRITRIZRS], R LA pop
BNHEEZ A

>>> t
>>> t
>>> X
>>> X
>>> t
>>> t
[3" , !]
>>> X

>>> X

'b'

pop modifies the list and returns the element that was removed. If you don’t provide an
index, it deletes and returns the last element.

pop BERFIFR, ARIEREIHFREITTR, MRIRAIEE—TFREIMLE, pop ZL=HIFRHAHER
B&E—1TTTHR.

If you don’t need the removed value, you can use the del operator:

NRIRAEZEmIEN@E T, RATLUA del 2 ERFE LM -

>>> t = [|a|, lbl, ICI]
>>> t = [|a|, lbl, ICI]
>>> del t[1]

>>> del t[1]

>>> t

>>> t

[lal, ICI]

If you know the element you want to remove (but not the index), you can use remove:

INRARFERE PRI TR, ERNEREIME, RALUER remove XNk ¢

>>>
>>>
>>>
>>>
>>>
>>>
[! , c!]

['a', lbl,
['a', lbl,
.remove('b")
.remove('b")

ICI]
ICI]

[o o o o o S o

The return value from remove is None.
remove HYIR[O]44 &%,
To remove more than one element, you can use del with a slice index:

ERREZ TR, JLUMER del ML) F3RE] -

>>>t: ['a', lbl, ICI, ldl, 'e', lfl]
>>>t: ['a', lbl, ICI, ldl, 'e', lfl]
>>> del t[1:5]

>>> del t[1:5]

>>> t

>>> t

[Ial, Ifl]

As usual, the slice selects all the elements up to but not including the second index.

MR MNERN—#, YARELAER, LExNMIFHRME M1 BE 5] PNER
WU RFres, B8EFLME M1 MASESREMNE 51 Pk,

10.9 Lists and strings 7R =75

A string is a sequence of characters and a list is a sequence of values, but a list of
characters is not the same as a string. To convert from a string to a list of characters, you
can use list:

FREZ—RINFHNEFT, MEAR—RINENFS, B—THFFAKRNIRES
RATFFFEN, BRE—NFHELENTFRIIR, RATLA list X NEE

>>>
>>>
>>>
>>>
>>>
>>>

[ISII |p|, lal, lml]

'spam'
'spam'
list(s)
list(s)

t ettt ®m

Because list is the name of a built-in function, you should avoid using it as a variable name. |
also avoid | because it looks too much like 1. So that's why | use t.

list E— TMHNEBRBHNEZET, MMUMRrz@RHERIEA T 2R, BB rzREad
B, RABNFAET, | TMMEEEEXD, FILLEREAT t,

The list function breaks a string into individual letters. If you want to break a string into
words, you can use the split method:

list T NEBFE— N FREPAR— TN FR, NRMFEBIRFRBU DK —TD 239, R
AT LAA split X NAE -

>>> s = 'pining for the fjords'
>>> s = 'pining for the fjords'
>>> t = s.split()

>>> t = s.split()

>>> t

>>> t

['pining', 'for', 'the', 'fjords']

An optional argument called a delimiter specifies which characters to use as word
boundaries. The following example uses a hyphen as a delimiter:

A NSHEERFF, BRAKMBELALRN, TEXMIFPmEtiEzs M0 Fh
EFFF

>>> s = 'spam-spam-spam'
>>> s = 'spam-spam-spam'
>>> delimiter = '-'
>>> delimiter = '-'

>>> t = s.split(delimiter)
>>> t = s.split(delimiter)
>>> t

>>> t

['spam', 'spam', 'spam']

join is the inverse of split. It takes a list of strings and concatenates the elements. join is a
string method, so you have to invoke it on the delimiter and pass the list as a parameter:

join @5 split HEEMEREI—1NT5E, ERW—NFREIKR, REEAAETHRHIES—
e, join @—NFRFHBEAZE, LU GIE join REIERFEER AR, FEA%—1TI
RIEHSH -

>>> t = ['pining', 'for', 'the', 'fjords']
>>> t = ['pining', 'for', 'the', 'fjords']
>>> delimiter = ' '

>>> delimiter = ' '

>>> s = delimiter.join(t)

>>> s = delimiter.join(t)

>>> g

>>> g

'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words. To
concatenate strings without spaces, you can use the empty string,", as a delimiter.

EExMIFH, ERFE—TERFER, AL join BATE £ R LR — 12K, BEE
FRARED—UMAEZE, (RAULUAZFRFE"EH—TERT T,

10.10 Objects and values st R# &

If we run these assignment statements:
NRFAVEIT P E XM E A

'"banana’
'"banana’

We know that a and b both refer to a string, but we don’t know whether they refer to the
same string. There are two possible states, shown in Figure 10.2.

HMHMET a ¥ b #AEZFRFH, ERNAZERNIEZTERA—1MF/H, ZHMAH
BER mMIRA, NE10.2FT.

ju|

a —= banang’ 8,
‘banana’
b — banana’ b —

Figure 10.2: State diagram.

In one case, a and b refer to two different objects that have the same value. In the second
case, they refer to the same object. To check whether two variables refer to the same object,
you can use the is operator.

EHE—MIERFR, aflbEAANTEANMR, AN HREERNE, EE-NER
T, afl b #IEARA—T R,

EREATEEESEANER— TR, TR Is & ER/,

>>>
>>>
>>>
>>>
>>>
>>>
True

'banana’
'"banana’
'"banana’
'"banana’
is b
is b

QYT T D

In this example, Python only created one string object, and both a and b refer to it. But when
you create two lists, you get two objects:

FEXNBIFH, Python REIT —NFRENR, ARlFa#bEERAE, BHIREILR
MIRB R, REZNMEARTHART

>>> a = [1, 2, 3]
>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> b = [1, 2, 3]
>>> g is b

>>> g is b

False

So the state diagram looks like Figure 10.3.

AL s RBIR A B B & iz 00 @ 10.3FT R F 7o

a—[1,223]
b—=[1,23]

Figure 10.3: State diagram.

In this case we would say that the two lists are equivalent, because they have the same
elements, but not identical, because they are not the same object. If two objects are
identical, they are also equivalent, but if they are equivalent, they are not necessarily
identical.

EZXIMERT, BTl maMNIREEEFEN, RAyenEHENTR, BBt 2E
—NHR, AAMNHFARARE—NNR, RADNIREZR TR, BeinAR2HE
£/, BINREMNESE, MRLER—NHR,

(&% : @A— 2 BF NROFM, BF B A— R ESRHE, /mE.)

Until now, we have been using “object” and “value” interchangeably, but it is more precise to
say that an object has a value. If you evaluate [1, 2, 3], you get a list object whose value is a
sequence of integers. If another list has the same elements, we say it has the same value,
but it is not the same object.

BRIMIE, FHMN—EL MRy 0 Tal EEERX®FER, B LBRUINGEER—
Mt R|E—ME. WRIRHE,2,3], REE—NIRIR, BNNRAROENER
— NEHFEH, MR ZHA—NINREBERNTR, FiMicea88RENE, BFFEE
GLESESE

10.11 Aliasing %|%

If a refers to an object and you assign b = a, then both variables refer to the same object:

MR aZ—MHRT, REMRWMEb=a, MLrxANZTELRBRAR—THR :

>>>
>>>
>>>
>>>
>>>
>>>
True

[1, 2, 3]
[1, 2, 3]
a

COTCOCTCoTO929
oo
QD

[y
2
o

The state diagram looks like Figure 10.4.

Lbet BOK A B 20 B 10.4Ff 730

4,
o > 11231

Figure 10.4: State diagram.

The association of a variable with an object is called a reference. In this example, there are
two references to the same object.

— N E EM—PRMXRUMSEIH, ELEXNPIFH, aflb2xtE—xt R AN
%l%o

An object with more than one reference has more than one name, so we say that the object
is aliased.

BHE—PIHRERLE—TEIH, BMBETALE—NRF, FAURLEIDIRENE T,
If the aliased object is mutable, changes made with one alias affect the other:

MR- HEBARBABERE, Boxt— 5 BMEREBERRET-AZEMSIA :

>>> p[0O]
>>> p[0]
>>> g
>>> g
[42, 2, 3]

42
42

Although this behavior can be useful, it is error-prone. In general, it is safer to avoid aliasing
when you are working with mutable objects.

x—HR2REMALY, BREZLNFELY. FIA—MREH, LEA L3R
&, ZzRRE&ERHNGER, IHELELE,

For immutable objects like strings, aliasing is not as much of a problem. In this example:

wtFARE E S REBIMFRFERG, HBEARTIZRNKREET . MTAR :

'"banana’
'"banana’

It almost never makes a difference whether a and b refer to the same string or not.

aflbREEEE—NFHMELRTLME T, LEFKBEMAR A,

10.12 List arguments 7R S #

When you pass a list to a function, the function gets a reference to the list. If the function
modifies the list, the caller sees the change. For example,delete_head removes the first
element from a list:

YR —DIIRALS —DEHBM R, RSNtz RE—NEIH, NREEE
TR, AAEREE T, LLIITEX delete_head EREFLAM T TR A MIFRE—
NItk :

def delete_head(t):
del t[0]

Here’s how it is used:

HAZENT :
>>> letters = ['a', 'b', 'c']
>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)
>>> delete_head(letters)
>>> letters ['b', 'c']
>>> letters ['b', 'c']

The parameter t and the variable letters are aliases for the same object. The stack diagram
looks like Figure 10.5.

RSt T = letters BARRA—xt RV 31 B, A B E10.5F7 7

Mmain letters —| lis!
=] —"a
delete_head 1] =
2—='¢ . _
Figure 10.5: Stack diagram.

Since the list is shared by two frames, | drew it between them. It is important to distinguish
between operations that modify lists and operations that create new lists. For example, the
append method modifies a list, but the + operator creates a new list:

K XK AMERMMRME, BHMEEEET EMZHE.

—EEXDMERINKN =B =EHIFTRNEE, XFHNEE, 0 append HiEEN
—NFIFR, BMS+E2EFRE~E— DGR

>>> t1
>>> t1
>>> t2
>>> t2
>>> t1
>>> t1
[1, 2,
>>> t2
>>> t2
None

[1, 2]
[1, 2]
tl.append(3)
tl.append(3)

w
—_

append modifies the list and returns None.

append 82 7 7k, REIHZEZE,

>>> t3
>>> t3
>>> t1
>>> t1
[, 2, 31
>>> t3

>>> t3

[, 2, 3, 4]
>>> t1

>>> t1

[, 2, 31

t1 + [4]
t1 + [4]

The + operator creates a new list and leaves the original list unchanged.
mES+iz BRI B THHIIKR, FREWRIIE,

This difference is important when you write functions that are supposed to modify lists. For
example, this function does not delete the head of a list:

FLUXMEYEE, THEYME—LEERIRMEEE, bl Tmmx PN EREst
RAEBESMRIIRHNE—NDITR -

def bad_delete_head(t):
t = t[1:] # WRONG!

The slice operator creates a new list and the assignment makes t refer to it, but that doesn’t
affect the caller.

PRz B/Fe8THNIR, RAEREEELtIERTIMHIIR, BXTEFhAR
%O

>>> t4 = [1, 2, 3]

>>> t4 = [1, 2, 3]

>>> bad_delete_head(t4)
>>> bad_delete_head(t4)
>>> t4

>>> t4

[1, 2, 3]

At the beginning of bad_delete_head, t and t4 refer to the same list. At the end,t refers to a
new list, but t4 still refers to the original, unmodified list.

{fbad_delete_headix MNEHEFFIRE 1TRIHR, t A 4iEMBE—NIIR, TLEERRE, t
BE TR, B ukAzx2RERNIIR, mMAERBSR,

An alternative is to write a function that creates and returns a new list. For example, tail
returns all but the first element of a list:

—MBNTERE TR EFREFHFIRIEE, N tail X DEBELREIZIRER T
BN TRZANEMPAIBETTR

def tail
return t[1:]

This function leaves the original list unmodified. Here’s how it is used:

ZPTHB SRR ERRFRETRER, TEZRAE

>>> letters = ['a', 'b', '
>>> letters = ['a', 'b', '
>>> rest = tail(letters)
>>> rest = tail(letters)
>>> rest

>>> rest

[Ibl, ICI]

c']
c']

10.13 Debugging A%

Careless use of lists (and other mutable objects) can lead to long hours of debugging. Here
are some common pitfalls and ways to avoid them:

WHIRKEHMA Z 4R, ANSNOEIY, BT RBZMA, TR K E A
Ko FTHE—LEERLBIMEM, LUIRERITTIE :

1. Most list methods modify the argument and return None.
This is the opposite of the string methods, which return a
new string and leave the original alone.

REBINRTEHERSE, ROZEE, XEFSFREREER, FRENTEERE
RE—MHFRH, RERFHETL,

If you are used to writing string code like this:

IMREIBETEXHFRERST

word = word.strip()

It is tempting to write list code like this:

R+ MR EH TEXMIIRAS

t = t.sort() # WRONG!

Because sort returns None, the next operation you perform with t is likely to fail. Before
using list methods and operators, you should read the documentation carefully and then test
them in interactive mode.

A% sort REIMRZ 22, FrLlxt t R4z EEbF ek,
EERIRNAEMzERTZE], R zFFE—TXHE, AREXREERNE@TEA]

T

2. Pick an idiom and stick with it. & —Fh 75 EFH R {FHH,

Part of the problem with lists is that there are too many ways to do things. For example, to
remove an element from a list, you can use pop, remove,del, or even a slice assignment.

FIRMEAN) BHRRK—BOMERAB RS HEEZ BN SEN, HIINEM—DTY
K mbr—1N T3k, TLLA pop, remove, del £E i 28] K #2E,

To add an element, you can use the append method or the + operator. Assuming that tis a
list and x is a list element, these are correct:

EIN—1 T3k, WL append AESHENS+iz 8BR/F, BiEt2— MR, mx2—1
FFRITHR, TEMRZEZ2IERL

t.append(x)
t =t + [x]
t += [x]

And these are wrong:

THEHXMEEENT :

t.append([x]) # WRONG!
t = t.append(x) # WRONG!
t + [x] # WRONG!
t=t+x # WRONG!

Try out each of these examples in interactive mode to make sure you understand what they
do. Notice that only the last one causes a runtime error; the other three are legal, but they do
the wrong thing.

ARERA TR LEXESNF, BEREAZERESNNER. BIRRERE—1 25
iEiTH2, EMN=1T8H24858, B> £4200R,

3. Make copies to avoid aliasing. REM %412, EEH 32,

If you want to use a method like sort that modifies the argument, but you need to keep the
original list as well, you can make a copy.

INRAREA sort X HHITTERENSH, XNERNREIRIIKR, (RALUEBD &0,

>>> t [3,
>>> t [3,
>>> t2 = t[:]
>>> t2 = t[:]
>>> t2. sort()
>>> t2.sort()
>>> t

>>> t
[3, 1, 2]
>>> t2

>>> t2

[1, 2, 3]

r 2]
r 2]

In this example you could also use the built-in function sorted, which returns a new, sorted
list and leaves the original alone.

EXANFIFA, REATLIARNERKsorted, XNEREBRIRE— N EE T 51K,
=3 AV L IIEN

>>> t2
>>> t2
>>> t
>>> t

sorted(t)
sorted(t)

>>> t2
>>> t2

[1, 2, 3]

10.14 Glossary K i&7I5%

list: A sequence of values.
Ik =R EBIFEI,
element: One of the values in a list (or other sequence), also called items.

TR —MIIRFEBEMFIIRN @, B,

nested list: A list that is an element of another list.
PPRFIER @ —DMEH BEfth SR TR,

accumulator: A variable used in a loop to add up or accumulate a result.
RNgs - —MAREEAPRNMBEHELRNT &,

augmented assignment: A statement that updates the value of a variable using an operator
like+=.

BB AAIER - ER+=3MBBzBREH T E/HEH,

reduce: A processing pattern that traverses a sequence and accumulates the elements into
a single result.

reduce : —HLEERN, EBH—1TFH, BITRERBERLER—TELBBILR,

map: A processing pattern that traverses a sequence and performs an operation on each
element.

map : —MLEEX, BH—1TFH, tEB—NTHREABAITEMEZE,

filter: A processing pattern that traverses a list and selects the elements that satisfy some
criterion.

filter : —MIRIBREN, BH—TIIKR, wEEPHBIFEANHN—ETR,
object: Something a variable can refer to. An object has a type and a value.
WR: FEMBERANRAET R, —TDHREBFENED LB, UER—TMMi.
equivalent: Having the same value.
BF BEFHME,
identical: Being the same object (which implies equivalence).
R RR—THR (ERELAMERFT) .
reference: The association between a variable and its value.
5IA: T2 a 5HAMXR,
aliasing: A circumstance where two or more variables refer to the same object.
& A= REANIERS § BEFTERNIER,
delimiter: A character or string used to indicate where a string should be split.

ERF — I FRAEFREH, ARBEFFDE HREID R,

10.15 Exercises %)

You can download solutions to these exercises from Here.

fRATLAM x B T3 FE X 24 5 . IR,

Exercise 1 %4 -] 1

Write a function called nested_sum that takes a list of lists of integers and adds up the
elements from all of the nested lists. For example:

BE—/EE, &4 nested sum, JN—RINEBHIIRKR, AREMEDZIRFPB TSR
&k, T :

>>t = [[1, 2],
>>t = [[1, 2],
>>> nested_sum(t
>>> nested_sum(t

(21, [4, 5, 6]]
(21, [4 1]

r

)
)

Exercise 2 4] 2

Write a function called cumsum that takes a list of numbers and returns the cumulative sum;
that is, a new list where the ith element is the sum of the first i+1 elements from the original
list. For example:

BE—PEE, BAY) cumsum, HBR—DEFIIR, ARREIRMA L ; hEL2FIIR
B | DRI ERVRPET 1N TENRM, WTFAAR :

>>> t = [1, 2, 3]
>>> t = [1, 2, 3]
>>> cumsum(t)
>>> cumsum(t)

[1, 3, 6]

Exercise 3 4] 3

Write a function called middle that takes a list and returns a new list that contains all but the
first and last elements. For example:

E—ANEH, %% middle, BK—AFIXK, EE— IR, FHREREIIFRS X
£RABHEHS. MTAR

http://thinkpython2.com/code/list_exercises.py
http://thinkpython2.com/code/list_exercises.py

>>> t [I I !]
>>> t [I I ’]
>>> middle(t)

>>> middle(t)

[2, 3]

Exercise 4 4)4

Write a function called chop that takes a list, modifies it by removing the first and last
elements, and returns None. For example:

BE—1PEE, &4 chop, BIN—1FIR, BEXNIIR, #kERE, REZEHE, 0F
T

Exercise 5 4.)5

Write a function called is_sorted that takes a list as a parameter and returns True if the list is
sorted in ascending order and False otherwise. For example:

E—1TEE, %% is_sorted, #M—DIREHSE, MRIKZEBFEIAFTFHE
5, EhREIER, EnbRER, TR :

>>> is_sorted([1,
>>> is_sorted([1,
True

>>> is_sorted(['b',
>>> is_sorted(['b',
False

r 2])
1

4

Exercise 6 4] 6

Two words are anagrams if you can rearrange the letters from one to spell the other. Write a
function called is_anagram that takes two strings and returns True if they are anagrams.

A A IR AT LR R FIESCREMESE RME A £ i[. B—1TEHE, &%
is_anagram, A NFRE, WMRE A T ALHEAMROE,

Exercise 7 457

Write a function called has_duplicates that takes a list and returns True if there is any
element that appears more than once. It should not modify the original list.

BE—1E#, %4 has_duplicates, #EW—1FIKR, IRE@MmEEEH AN ITER, FiR
CE, XPEBTEEURTIER,

Exercise 8 4°]8

This exercise pertains to the so-called Birthday Paradox, which you can read about at Here.
If there are 23 students in your class, what are the chances that two of you have the same
birthday? You can estimate this probability by generating random samples of 23 birthdays
and checking for matches. Hint: you can generate random birthdays with the randint function
in the random module. You can download my solution from Here.

XN BT UUWMEEREFS, (AR EFXEBER:—TELSE =R,

MAMRIE EB23MEE, IBFAANMNARB—KEEROBERE S K ? MRl s fh— 23D
MALE R AEHEBRERMEIER, IR7—T {RULLUE randint BRECERERBENER, X
NEHEETE random & A,

RETLAM X BT H I B2,

Exercise 9 4.9

Write a function that reads the file words.txt and builds a list with one element per word.
Write two versions of this function, one using the append method and the other using the
idiom t =t + [x]. Which one takes longer to run? Why? Solution .

BE—NEE, #B0UF words.txt, REBII—MIIR, BNIRFENTRUEBEINX
HREDN R, EATRARNXHIELE, — ML append 3%, #4—1THBE
Z2HIER (t=t+[x]o BREXFTETHAEK? AHLRZAHE?

BB

Exercise 10 410

To check whether a word is in the word list, you could use the in operator, but it would be
slow because it searches through the words in order.

Bt —PNEAEAAEELEXNECHRE, RALUMER in 2 8/, BrESRIE,
KA XA in iz ERFEM L BIREREREANE LR,

http://en.wikipedia.org/wiki/Birthday_paradox
http://thinkpython2.com/code/birthday.py
http://en.wikipedia.org/wiki/Birthday_paradox
http://thinkpython2.com/code/birthday.py
http://thinkpython2.com/code/wordlist.py
http://thinkpython2.com/code/wordlist.py

Because the words are in alphabetical order, we can speed things up with a bisection search
(also known as binary search), which is similar to what you do when you look a word up in
the dictionary. You start in the middle and check to see whether the word you are looking for
comes before the word in the middle of the list. If so, you search the first half of the list the
same way. Otherwise you search the second half.

e XL 2 RRBFRARAFALB, FAUIMTLUINE—T, A—#MxtifiER
(thAUHE = TRR) , BT IEMARER R hHFHRRE 2 ETS, REREERD
e, BEXINERERNE LEAZEFAMENRIE. MRERE, XIRIFERD
XA, sk X Rk, HART, RERFHD, MERFHOLT, BHEEXHH,

Either way, you cut the remaining search space in half. If the word list has 113,809 words, it
will take about 17 steps to find the word or conclude that it's not there.

TwEH, BERASIBERTE LA —F, NRAKREE T 11380910 %57, HFiie
175 FLEEFR Bl 2 433), SNEHBEMARE £ 43 AL 3 ;LR A,

Write a function called in_bisect that takes a sorted list and a target value and returns the
index of the value in the list if it's there, or None if it's not. Or you could read the
documentation of the bisect module and use that! Solution

Mo EERT, B—1EE, &4 in_bisect, EHN—NEE i3 IREBRFEDRFBETIBISI
K, UR—1T B, ENRPERENE, HBETROERERSICE, HAZERRO

b,
T o

B A,

Exercise 11 %4 -] 11

Two words are a “reverse pair” if each is the reverse of the other. Write a program that finds
all the reverse pairs in the word list. Solution.

ANAMNREAMRF, RFENZE B . B—PEEKE—TFEX M LR
PRA X A3t BB

Exercise 12 4)12

Two words “interlock” if taking alternating letters from each forms a new word. For example,
“shoe” and “cold” interlock to form “schooled”. Solution. Credit: This exercise is inspired by
an example at Here.

AN EE, RRHESENER, MREHER— N2, sitey FTEgd . b,
shoe #1 cold#t AT A4 BRI —#24B B 48 A% schooled, (%3 3F : shoe+cold= schooled
) BB, R XN ZEITRE—RAFHE 4.

http://thinkpython2.com/code/inlist.py
http://thinkpython2.com/code/inlist.py
http://thinkpython2.com/code/reverse_pair.py
http://thinkpython2.com/code/reverse_pair.py
http://thinkpython2.com/code/interlock.py
http://puzzlers.org
http://thinkpython2.com/code/interlock.py
http://puzzlers.org

1. Write a program that finds all pairs of words that interlock. Hint: don’t enumerate all
pairs!

BE—1i2F, SEMAEIHNEY £E 1, =) FTEMEMAERN £ s |

1. Can you find any words that are three-way interlocked; that is, every third letter forms a
word, starting from the first, second or third?

REEFHE M= E S 238 2 ; MEBMZZHI =1 £ ANFREEARNR— T 23989

=47 ?

Chapter 11 Dictionaries 7t

This chapter presents another built-in type called a dictionary. Dictionaries are one of
Python’s best features; they are the building blocks of many efficient and elegant algorithms.

AEZHNABTZ 3N —MREN LR, llFz#l, FHZE Python RBRFENNEZ— ;
ERFHEMEHRZ SV BRHBENE L,

11.1 A dictionary is a mapping 2 — Ak &

A dictionary is like a list, but more general. In a list, the indices have to be integers; in a
dictionary they can be (almost) any type.

FHERE—MIR—#, EHEMZAET, SPRGSOHET ., EIIREE, R340
R MEFRER, RYLALFEM % B RMERSIT,

(2FF : MFFFE string, EIFUEK list, B EIFH dictionary, Python X% £ % BUm
E—MZAENIE, REEESHT, SAEREART, XBEAR—EEZILFFE
fR—T, LEBCE £ EEER,)

A dictionary contains a collection of indices, which are called keys, and a collection of
values. Each key is associated with a single value. The association of a key and a value is
called a key-value pair or sometimes an item.

FHAFE-RINFRES, FamesTuUzEsT, mause, REEtpE— NN,
s, BNt e BESEN— DM A, XM EmIxt xRt b @
s, AeHiEtilg,

(3EFF 1 BNRZLREATMBENRFN LR, ARE L ZINHFHER,)

In mathematical language, a dictionary represents a mapping from keys to values, so you
can also say that each key “maps to” a value. As an example, we’ll build a dictionary that
maps from English to Spanish words, so the keys and the values are all strings.

B#FizEERK, —NFHMART M B4 a0 —MME X%, FRURERIiED
EMRET R — N, FBISEH, BB —DNMEZ 255 BB ;2 £ 351 F
B, XM ERBEFETET,

The function dict creates a new dictionary with no items. Because dict is the name of a built-
in function, you should avoid using it as a variable name.

dict PR E—NREARABNEFH, E dict LFRERBRFTT, FTLURRE
ZIR R L EH.

>>> eng2sp
>>> eng2sp
>>> eng2sp
>>> eng2sp

{}

dict()
dict()

The squiggly-brackets, {}, represent an empty dictionary. To add items to the dictionary, you
can use square brackets:

AES, LUEES, e, ART—1MEFHl, ERFHRBEEMA, ATLUERARE

75 .

'uno'
'uno'

>>> eng2sp['one']
>>> eng2sp['one']

This line creates an item that maps from the key 'one’ to the value 'uno'. If we print the
dictionary again, we see a key-value pair with a colon between the key and value:

X—ITRABEILT — 1R, XPDHIRE T4 'one' Bll424a 'uno's WIRFATHERITEI#H H
—TFENFH, RRBFINEEEIE—TaXT, #axthaRAESRAT :
>>> eng2sp

>>> eng2sp
{'one': 'uno'}

This output format is also an input format. For example, you can create a new dictionary with
three items:

P AR A LG A, EAMRAT DI # #I— DB =P AT

>>> eng2sp
>>> eng2sp

{'one': 'uno', 'two': 'dos', 'three': 'tres'}
{'one': 'uno', 'two': 'dos', 'three': 'tres'}

But if you print eng2sp, you might be surprised:

BRmHE—T, MBI FHRBET, ERFFA—#

>>> eng2sp
>>> eng2sp
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The order of the key-value pairs might not be the same. If you type the same example on
your computer, you might get a different result. In general, the order of items in a dictionary
is unpredictable.

XL @ S BDRF A — 4 T o IRARAEAR i Elx EEx B, RGEIMLRBA
BER—#, *£rrLt, FHANANIGEENAERN,

But that’s not a problem because the elements of a dictionary are never indexed with integer
indices. Instead, you use the keys to look up the corresponding values:

EEERtARE R, IAFREENTRFTZAEREBIREINN, ARSI UE
PR AR & Poxt B4

>>> eng2sp['two']
>>> eng2sp['two']
'dos'

The key 'two’ always maps to the value 'dos' so the order of the items doesn’t matter. If the
key isn’t in the dictionary, you get an exception:

he'two' ¥ RBRETEI 42 f'dos’, FTLAABIEESIRF HAE &,
INRARFHRAZEMIEEN L, MASENTRT

>>> eng2sp[' four']
>>> eng2sp[' four']
KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:

len BRI L AEFE | ; RO E xR E -

>>> len(eng2sp)
>>> len(eng2sp)
3

The in operator works on dictionaries, too; it tells you whether something appears as a key
in the dictionary (appearing as a value is not good enough).

in Z BRAERTFH ; (RAURAERHAMENEETERFETFHP (BHM4E, T
REFUMTAE @) o

>>> 'one' in eng2sp
>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the method
values, which returns a collection of values, and then use the in operator:

FHIRTia =S EFHEA, RMERE values A%, XIPNHESBAEIRE], AFH In
FIRTFL AT LAY -

>>> vals eng2sp.values()
>>> vals eng2sp.values()
>>> 'uno' in vals

>>> 'uno' in vals

True

The in operator uses different algorithms for lists and dictionaries. For lists, it searches the
elements of the list in order, as in Section 8.6. As the list gets longer, the search time gets
longer in direct proportion.

in z ARFEFHRPHIIRDPETRNEET, WHIRFKR, SHRBAFERIIKRHBH
B—Tk, WMB.6ATR. MEFIREFBKT, IMERIBERESHNE, FREHE
IEFARGIE,

For dictionaries, Python uses an algorithm called a hashtable that has a remarkable
property: the in operator takes about the same amount of time no matter how many items
are in the dictionary. | explain how that’s possible in Section 13.4, but the explanation might
not make sense until you've read a few more chapters.

Mt R %, Python T —FMIHHRIAERNER, A —MEZEHEME inz
B ENFHEFERANHET L FHRAESZ K, THEENREZDA, 6% 8t a8
BEEA—HN, BEI1S4SEA—TELARE, FAIMEZR/LECETREEM I
R R,

11.2 Dictionary as a collection of counters Fi = B1/F
A it 8 as

Suppose you are given a string and you want to count how many times each letter appears.
There are several ways you could do it:

B MRBE—1"FFE, ARTFEREL —TENEREATZVR, REUlBit—TFA
ERE A,

1. You could create 26 variables, one for each letter of the alphabet. Then you could
traverse the string and, for each character, increment the corresponding counter,
probably using a chained conditional.

REJLUBEII261 T &, B—TKR—IFR, REREHENFHSE, SPFERNIHY
ERMEB =t LB+ EE, ATRIARD AN,

1. You could create a list with 26 elements. Then you could convert each character to a
number (using the built-in function ord), use the number as an index into the list, and
increment the appropriate counter.

fRETLUBEIL — 1N E26 D THRIFIR, ARFREEINFE#£RK— 18T (FAREHN ord
HE) , AREHFEH X DINRNZRE], ARRERINE BT8R

1. You could create a dictionary with characters as keys and counters as the
corresponding values. The first time you see a character, you would add an item to the
dictionary. After that you would increment the value of an existing item.

RAIUEIL— 178, HFRFEH, FizFRHEARREES a0 dE. F—RE
H—1FE, EFHERN—7H, LEBERZXNFE, EREESENAL#1T
SRONEAwT,

Each of these options performs the same computation, but each of them implements that
computation in a different way.

FEXEFE#ATHBR—H#NEE, BENSBiENE AT EETEN,

An implementation is a way of performing a computation; some implementations are better
than others. For example, an advantage of the dictionary implementation is that we don’t
have to know ahead of time which letters appear in the string and we only have to make
room for the letters that do appear. Here is what the code might look like:

TR MEEH#THNAN ; BN A ZLHMIEGF—L, HINAFHEE S AR S
MEBERNAIFEZANEFHEFREREFE, RFEHENEFENFEREREFHE
I o

TEER DG

def histogram
d = dict()
for ¢ in s:
if ¢ not in d:
d[c] =
else:
dlc] +=
return d

The name of the function is histogram, which is a statistical term for a collection of counters
(or frequencies). The first line of the function creates an empty dictionary. The for loop
traverses the string. Each time through the loop, if the character c is not in the dictionary, we
create a new item with key ¢ and the initial value 1 (since we have seen this letter once). If ¢
is already in the dictionary we increment d[c]. Here’s how it works:

EEEIZF A histogram, XE2— M 4%itFEARE, BREHEHR (F&FHR) HES,

—/N\To=

MMEE— TR T — BT, for BHEHTEATHE. BREEFNHIE, 10
RF o RAETEA, BETREUE—FNA, &y MhEN1 (EneaE
BE—RT) . WP cBAHFETFART, Ha dc#iT— TR,

TEZEABEA

>>> h histogram('brontosaurus")

>>> h histogram('brontosaurus")

>>> h

>>> h

{'a': 1, 'b': 1, 'o':t 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters 'a’ and 'b' appear once; 'o' appears twice, and so on.
Dictionaries have a method called get that takes a key and a default value. If the key
appears in the dictionary, get returns the corresponding value; otherwise it returns the
default value. For example:

Yarankaran

SF~TFo

FHE—NTTE, WH get, BR—PMMN—TEAE. MRXMEEFHRAPELE, get
MERE B E ; RAFE, ERZREIXDEGAE,

histogramfJ s RFXAFRa f b BT —R, o HaL T &R,

>>> h

>>> h
>>> h
>>> h
{Ial:
>>> h,
>>> h,
il,

>>> h,
>>> h,

histogram('a")
histogram('a")

1}
get('a’',
get('a’',

get('b",
get('b",

0]

As an exercise, use get to write histogram more concisely. You should be able to eliminate
the if statement.

NSy

8] V& =o

45, Fget BNAE, REEBE—T histogram X PN EHE, iLEE AILULE

1= ARLE if szA,

11.3 Looping and dictionaries &35 F &

If you use a dictionary in a for statement, it traverses the keys of the dictionary. For example,
print_hist prints each key and the corresponding value:

INRARTE for iz A EEAFH, BFEREHFRAPBMAER. HIINTEXD print_hist &
Bl ERRE— M5 misE

def print_hist
for ¢ in h:
print(c, h[c])

Here’s what the output looks like:

MW

>>> h histogram('parrot')
>>> h histogram('parrot')
>>> print_hist(h)
>>> print_hist(h)
a p r t o]

Again, the keys are in no particular order. Dictionaries have a method called keys that
returns the keys of the dictionary, in no particular order, as a list. As an exercise, modify
print_hist to print the keys and their values in alphabetical order.

B g xR EFRBERERF. FERE - TRERNUE keys F757%, REIFHAPH
ABHRK—TIIR, USHERIRF. ST%5, BN—TLEX4 print_hist E%, it
CIRIRFRRIAF i 4 F 4 1A

11.4 Reverse lookup ¥ [a %

Given a dictionary d and a key k, it is easy to find the corresponding value v = d[k]. This
operation is called a lookup. But what if you have v and you want to find k? You have two
problems: first, there might be more than one key that maps to the value v. Depending on
the application, you might be able to pick one, or you might have to make a list that contains
all of them. Second, there is no simple syntax to do a reverse lookup; you have to search.
Here is a function that takes a value and returns the first key that maps to that value:

E—NFHJ, UR—1Mitk, REZHEI RE4E v=dlk], X MEERM £ .

BIRMRBLE v ITBEHAE KE?IREANFAT : 8%, WRBEFIE—MrE Y
Vo IRIERANARE, RBFTLUMAPE—, HER A LIERE x84 R — 15
RKoe HIR, BE—MiE £p0E R ARE—MERE L ; M AER—T,

def reverse_lookup

for k in d:
if d[k] == v:
return k

raise LookupError()

This function is yet another example of the search pattern, but it uses a feature we haven’t
seen before, raise. The raise statement causes an exception; in this case it causes a
LookupError, which is a built-in exception use to indicate that a lookup operation failed.

EINHMEERERXW 3 —NMIF, BEIT —NEHMINEE : raise, raiseiz @& SFH—1
B8 ExXMIER TR LookupError, X@— 1THERE, R & HIEERK,

If we get to the end of the loop, that means v doesn’t appear in the dictionary as a value, so
we raise an exception. Here is an example of a successful reverse lookup:

MR EITTENER, AEKRE v EFRPRXEFE Y RAEAEAR, PR raise —1
R EIEA

TEZE—TKI#THER & HHIEA

>>>
>>>
>>>
>>>
>>>
>>>
1 r 1

histogram('parrot"')
histogram('parrot")
reverse_lookup(h, 2)
reverse_lookup(h, 2)

X XXX oS

And an unsuccessful one:

TEHXPMZ— NN

>>> k = reverse_lookup(h, 3)
>>> k = reverse_lookup(h, 3)
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<stdin>"

Al S— >

The effect when you raise an exception is the same as when Python raises one: it prints a
traceback and an error message.

fRBC raise =M RERMRAA Python HIHMFEZE—HE : BERGH—TERLL
&_/I\’%Li%1§%\o

The raise statement can take a detailed error message as an optional argument. For
example:

raise i& B AT LAZA ¥ i U452 E B A ATt BB MTFATR

>>> raise ValueError('value does not appear in the dictionary')
>>> raise ValueError('value does not appear in the dictionary')
Traceback (most recent call last): File "<stdin>", line 1, in ?
ValueError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if you have to do it often, or if the
dictionary gets big, the performance of your program will suffer.

WEsHBELEE S HEBRERS MRELERIN:E, JBFRIB/RAT, EF
By RERL R AT HTH0,

11.5 Dictionaries and lists =8 F1513%

Lists can appear as values in a dictionary. For example, if you are given a dictionary that
maps from letters to frequencies, you might want to invert it; that is, create a dictionary that
maps from frequencies to letters. Since there might be several letters with the same
frequency, each value in the inverted dictionary should be a list of letters. Here is a function

that inverts a dictionary:

PIRA LI EFE PR @, A R—DFHE, BB TFFSRRE, (RUERE
WH—T EMERIL—TMMRRRN B FRNFHE, KA NFRA FAEB5R
R, FxM¥HFHRANENMER L 22— TFRIFIK,

THEHMZE— T ¥ FHRIEKE

def invert_dict
inverse = dict()
for key in d:
val = d[key]
if val not in inverse:
inverse[val] = [key]
else:
inverse[val].append(key)
return inverse

Each time through the loop, key gets a key from d and val gets the corresponding value. If
val is not in inverse, that means we haven’t seen it before, so we create a new item and
initialize it with a singleton (a list that contains a single element). Otherwise we have seen
this value before, so we append the corresponding key to the list. Here is an example:

BREFW R, keyX DT EFSE d PEI—4E, val KA B E. 2R val &
£ inverse XN FHEH, MEKREXZEREEE, MUMBI—MHHR, RAEA—
2 uREXRDRKRLE. ENRHAXITMREBLEET, IHERNAES ZBRFIFRF
)1t i RS S B 7 e > N

THEE— M HA :

>>> hist = histogram('parrot')

>>> hist = histogram('parrot')

>>> hist

>>> hist

{Ial: , lpl: , Irl: , |tl: , lol: }

invert_dict(hist)
invert_dict(hist)

>>> inverse
>>> inverse
>>> inverse
>>> inverse

{1: ['a’, 'p', 'tY, To'], 2: ['r']}

dict dict list

| ®—=1 iny | 11— - 00—
P 1—=p
T —= 2 22— T
N 3—>=
o= it

Figure 11.1: State diagram.

Figure 11.1 is a state diagram showing hist and inverse. A dictionary is represented as a box
with the type dict above it and the key-value pairs inside. If the values are integers, floats or
strings, | draw them inside the box, but | usually draw lists outside the box, just to keep the
diagram simple. Lists can be values in a dictionary, as this example shows, but they cannot
be keys. Here’s what happens if you try:

& 11.1 4 hist 1 inverse ANFHEPR AR, FERAAERT, LAFSRT £8 dict, A
MR A bEE s, IR EABY, ZREESEFFE, REBenNBRB—1NHAER, Fit
BEERIBRIECMNBREAENTE, IHAREEG LT 4,

WAEFr, AFHEPSEENRIIR, MAERY. MRIFEREZNE, MREFMT
FTREY 432

>>>
>>>
>>>
>>>

[1, 2, 3]

[1, 2, 3]

dict()

dict()

>>> d[t] = 'oops'

>>> d[t] = 'oops'

Traceback (most recent call last): File "<stdin>", line 1, in ? TypeError: list objects

o Ot t
o

j R s

| mentioned earlier that a dictionary is implemented using a hashtable and that means that
the keys have to be hashtable.

Hzristit, FHREAKRKER (FIIKR) EKzap, IMTREMAEEBL 55
B,
A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries use
these integers, called hash values, to store and look up key-value pairs.

hash 2—1ME#, EWRES—M@, REROE—PEHR, FHRAXEEYREFHMS K
befast, X LB IMEIG A E.

This system works fine if the keys are immutable. But if the keys are mutable, like lists, bad
things happen. For example, when you create a key-value pair, Python hashes the key and
stores it in the corresponding location. If you modify the key and then hash it again, it would
go to a different location. In that case you might have two entries for the same key, or you
might not be able to find a key. Either way, the dictionary wouldn’t work correctly.

MREAETEBN, RATHFER. HORETLUS, LLINZSIKR, AL T. B,

Re|B— Nt axtBatx, Python it B4Mlad &, REFEEMERNAE, MRIREXN
T8, AREHEREME, MAREBERR—NMIET, XetE—MEa A g N ER
T, HEMRUAEHANENMET, CFHRAREEETEFET,

That’s why keys have to be hashable, and why mutable types like lists aren’t. The simplest
way to get around this limitation is to use tuples, which we will see in the next chapter. Since
dictionaries are mutable, they can’t be used as keys, but they can be used as values.

EELR A o X LA B EREIH, MRSIRE A T £ BIgL AT, R 4R
W EARNMEBERTAE, ZIPMHRNEET—ERED,

& % FH A LB, FTUANBER R4, ReeF ks,

(3EF : BRRE—MERSIR, HXATFENENKY, BN/ EKXRT
i, EERR.)

11.6 Memos % %

If you played with the fibonacci function from Section 6.7, you might have noticed that the
bigger the argument you provide, the longer the function takes to run. Furthermore, the run
time increases quickly. To understand why, consider Figure 11.2, which shows the call graph
forfibonacci with n=4:

SORARXE T 6.7HRBINZERIRRES, R+ % AEESRIER, REE TR
TKT. A4, 2T ARIBKRREE,

R EELOE, RESE—TEHN.2, APERT I n=48sHZEREGE RS
Ao

fibonacc

n—= 4
fibonace fibonacc
n=—a= 3 n=—a= 2
N — 2 N =— N — n ==)
fibonace fibonacc
m—==1 n—==10

Figure 11.2: Call graph.

A call graph shows a set of function frames, with lines connecting each frame to the frames
of the functions it calls. At the top of the graph, fibonacci with n=4 calls fibonacci with n=3
and n=2. In turn, fibonacci with n=3 calls fibonacciwith n=2 and n=1. And so on.

BARAEABRT —RIMNEKBAIE, BAEEEMNEERITERHERA LKNEAXR, MEN
ERBNSE n=4, ABT n=3F n=2a MERIEK, 28 n=30{xE A n=2
*D n:1 %%EpllEﬁE;Ro 1Z‘ZJH:§'§‘?EO

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inefficient solution
to the problem, and it gets worse as the argument gets bigger.

& Hfibonacci(0)ffibonacci(1)Z# A AL RIE, XHNRRARESENEN, BES
HIeK, WERMBRBET.,

One solution is to keep track of values that have already been computed by storing them in
a dictionary. A previously computed value that is stored for later use is called a memo. Here
is a “memoized” version of fibonacci:

AH—HEERZEREF - TELHTEINE, RAEREE—ITFHHP, 2 EIH
AEHER, IHEENEEPESER, IRlsT, TER—THXMERESR N
2R AR SR ERI£X

known = {0:0, 1:1}
def fibonacci(n):
if n in known:
return known[n]
res = fibonacci(n-1) + fibonacci(n-2)
known[n] = res
return res

known is a dictionary that keeps track of the Fibonacci numbers we already know. It starts
with two items: 0 maps to 0 and 1 maps to 1.

known @ — MR REFEE 2+ ELRBERBENFH, FiR-nBEAD, 0310, 1
strl, ZFED 5 BNERIBEHEE,

Whenever fibonacci is called, it checks known. If the result is already there, it can return
immediately. Otherwise it has to compute the new value, add it to the dictionary, and return
it. If you run this version of fibonacci and compare it with the original, you will find that it is
much faster.

B RBELZRBEZRBGART, B E known ZINFH, MNREEA+RiIMAEATHA
(R, RILELR[E, FAARERLTELFE, FEFEINFHRER, RERER DI
BRI,

INRARE TX —PRAFZERIBZEE, L ALLEREBTIRERREGZ.

11.7 Global variables £F T &

In the previous example, known is created outside the function, so it belongs to the special
frame called __main__. Variables in __main__ are sometimes called global because they
can be accessed from any function. Unlike local variables, which disappear when their
function ends, global variables persist from one function call to the next.

ELmEBFAR, known INFHIBERENGERN, FILEBRTEREAN, x2—1
BHRHNE, EXFRHFNTERULETE, RAAMAREET Ly T E, B
EEFJ’T}%E’]T%I%BEFTI/%%T mEERBEEMEEAE A2 REKRATFEE.

It is common to use global variables for flags; that is, boolean variables that indicate (“flag”)
whether a condition is true. For example, some programs use a flag named verbose to
control the level of detail in the output:

—REREEET =Y flag, BELE4ri7 ; LWUIARAM — 1M RERESHINA R T E
ZER, LLINBEMREFHEAF A verbose BtriR T £, EEE%'J%HJ'WT@E’\J#?EEE:

verbose = True

def examplel():

if verbose:
print('Running examplel')

If you try to reassign a global variable, you might be surprised. The following example is
supposed to keep track of whether the function has been called:

MRMELERETEEFRE, sRFBEHN. TENHFH, ARKEEEERBEX
HESHART :
been_called = False

def example2():
been_called = True # WRONG

But if you run it you will see that the value of been_called doesn’t change. The problem is
that example2 creates a new local variable named been_called. The local variable goes
away when the function ends, and has no effect on the global variable.

Rz 47—, FHA®EE, RZ been called WEHAS T b, ZNMERAHNERE R
example2x NEE 4B T — NFFHIE 4 been_called B T 8, B LERZG, B
TEMRKRT, HFFREEH2ET =,

To reassign a global variable inside a function you have to declare the global variable before
you use it:

BERBARKLER T EEN WM, DAREEACAFERAZIINERTE

been_called = False

def example2():
global been_called
been_called = True

The global statement tells the interpreter something like, “In this function, when | say
been_called, | mean the global variable; don’t create a local one.” Here’s an example that
tries to update a global variable:

global AR BV RE S kfE%Es : TTEXPDEEMN, been_called FZL2BTE; T
EHBE—IMRAEHNEHRTE, J

TEHHAFH, KANERTE#TEH

count = 0
def example3():
count = count + 1 # WRONG

If you run it you get:
i T8, REBIINTRT

UnboundLocalError: local variable 'count' referenced before assignment

BREE AR RTHNEBRRRAERIE 2 : BEZ 2 count K& a5 A,

Python assumes that count is local, and under that assumption you are reading it before
writing it. The solution, again, is to declare count global.

Python &fRi% X count ZFERRY, AREETXH#HRE, MARETH z T BN
KA RE, XA 9 BERR T RRATLZ = Micount A £ B % B,

def example3
global count
count +=

If a global variable refers to a mutable value, you can modify the value without declaring the
variable:

MRER T ERANE—TAENE, (FAIULTEERZIEMEREN :

known = {0:0, 1:1}
def example4
known[2] =

So you can add, remove and replace elements of a global list or dictionary, but if you want to
reassign the variable, you have to declare it:

FILRAT LUE L BMFIREEFZHEERM,. BRSER TR, BNRFREEHL X
N"eFrTEWRE, MOBFEFHAT -

def example5
global known
known = dict()

Global variables can be useful, but if you have a lot of them, and you modify them frequently,
they can make programs hard to debug.

£RETEREM, BEREER, ERLERERTENG, MiLEFREHRXT,

11.8 Debugging X

As you work with bigger datasets it can become unwieldy to debug by printing and checking
the output by hand. Here are some suggestions for debugging large datasets:

AEPIEEMZEHE LT, BRATHNHBNFHILLNAERARXRBEHT. TEHR
— L3t X FE 2 BUE L 4 FRYER YL ¢

Scale down the input: If possible, reduce the size of the dataset. For example if the program
reads a text file, start with just the first 10 lines, or with the smallest example you can find.
You can either edit the files themselves, or (better) modify the program so it reads only the
first n lines.

AN~

WA

8

AR/ NHERAR, MREFB LI —IXAENE, MREpIEmmi+17, HERIR
ﬁ‘é?ﬂz IS/ EBIAEB, RATLAR 4 — T XA, HNEEZESEF RO ERETE
9 n 1T, XHEK,

'EI}

If there is an error, you can reduce n to the smallest value that manifests the error, and then
increase it gradually as you find and correct errors.

MEEELET, R /N—Tn, —BEE&2EENR/NN N @, AEEZXRHIEMN
n, XHEFBEHEIEL2FHRET,

Check summaries and types: Instead of printing and checking the entire dataset, consider
printing summaries of the data: for example, the number of items in a dictionary or the total
of a list of numbers.

wEMEMLR .

X Ol A BITEE & BONEER, METHHm BEHENEE @ tbilFfppgsamn
H, FE—NIRFNEE L H,

A common cause of runtime errors is a value that is not the right type. For debugging this
kind of error, it is often enough to print the type of a value.

SREITHEN—ME LERE B2, T X452 3#1TARK, HH—TaEpxi
FLAETLLT

Write self-checks: Sometimes you can write code to check for errors automatically. For
example, if you are computing the average of a list of numbers, you could check that the
result is not greater than the largest element in the list or less than the smallest. This is
called a “sanity check” because it detects results that are “insane”. Another kind of check
compares the results of two different computations to see if they are consistent. This is
called a “consistency check”.

BEE#S :

BRI LB B #4465 42098, 201%5, BIR+E—DIIRPHFHTES
a, fRAILA 8 — T %ETEttﬂ?‘%q:'E’JE_jUﬁ RHELL&E/NMEE /DN, X T
Bt , RAyBKbELE B IrTy GFEE: ‘@TXZE#?—EJ@;MLE’JM,UO) 7
H—Mi st HERARMAREE ﬁ REttbgR, BEMRNES —N. FERXFU
Fr—%M sl

Format the output: Formatting debugging output can make it easier to spot an error. We saw
an example in Section 6.9. The pprint module provides a pprint function that displays built-in
types in a more human-readable format (pprint stands for “pretty print”).

I -

HMVERA XA, BRI 2, E6.90 &R Nt —NMIIF T, pprint &R
BT — pprint 2, ZEBESIERNENLERAANGRERERZHIREE RHE
(pprint 72 Tpretty print] B%EE)

Again, time you spend building scaffolding can reduce the time you spend debugging.

BREA—T, BEMFRADE K, RAXRXBN AR g E.

11.9 Glossary Ri&%I%K

mapping: A relationship in which each element of one set corresponds to an element of
another set.

BRET - —aBIEF RS » —ABERTEN—— B HIX R,

dictionary: A mapping from keys to their corresponding values.
FHL 0 MEEEI ST R 4 1a BIBRGT,

key-value pair: The representation of the mapping from a key to a value.
ba st o BIREIRRB— b R0 B BOSE 1A

item: In a dictionary, another name for a key-value pair.
R FEE ARG xR,

key: An object that appears in a dictionary as the first part of a key-value pair.
b FRAN—IHR, adtPRE—ED.

value: An object that appears in a dictionary as the second part of a key-value pair. This is
more specific than our previous use of the word “value”.

g FHAN—PHAR, REMNBEZEHD, ITMHMZARINETE, EFHRER
FRRPIERBZ4E, MAERE.

implementation: A way of performing a computation.
£ #HTHEN—MAR,

hashtable: The algorithm used to implement Python dictionaries.
M# % : Python 52 s FEAMY—FREE,

hash function: A function used by a hashtable to compute the location for a key.

AR : BRRERN—MEY, € EH—TBLE,

hashable: A type that has a hash function. Immutable types like integers, floats and strings
are hashable; mutable types like lists and dictionaries are not.

BB : —Fh R, HIRAEE. T L 2 BLMER, FRENTHRBREIN ;
o] % % B FIRAF A TR,

(&7 BRBBEERE, BAYRBZAZRAE, FEEHBLEE,)
lookup: A dictionary operation that takes a key and finds the corresponding value.
B3 FHREEN—M, RIFSENR &S w04 E.

reverse lookup: A dictionary operation that takes a value and finds one or more keys that
map to it.

WE S FHEFEN—M, RE-— AT EN—PHEZS D
raise statement: A statement that (deliberately) raises an exception.
raise ;&) : FFhERKWHEFEH—1EH.
singleton: A list (or other sequence) with a single element.
2URE REF N2 MTFERNIIRIEBEMEFET,

call graph: A diagram that shows every frame created during the execution of a program,
with an arrow from each caller to each callee.

ARE : —TEE, BrREFaTaBPE— TR, RAfARREZARENGAR
%ZI‘E‘UO

memo: A computed value stored to avoid unnecessary future computation.
£ it ERIMAFE#ER, BRERSHFHMNTE.

global variable: A variable defined outside a function. Global variables can be accessed from
any function.

LRTE HEAELNTE, £F % SREMHATA RECK=IEA,
global statement: A statement that declares a variable name global.
global ;58] : EEA—1 % & # £/BE 4,
flag: A boolean variable used to indicate whether a condition is true.
iR MR EE, BRET—ITRUEESHE,

declaration: A statement like global that tells the interpreter something about a variable.

A HA - Lb40 global X #HY2E), XSG RS T 2L,

11.10 Exercises %4]

Exercise 1 %4 -] 1

Write a function that reads the words in words.txt and stores them as keys in a dictionary. It
doesn’t matter what the values are. Then you can use the in operator as a fast way to check
whether a string is in the dictionary. If you did Exercise 10, you can compare the speed of
this implementation with the list in operator and the bisection search.

B— P EHEK = words.txt KB %39, RRFEHREFR—INFHEP, ARTLT
BR, RER In 2BRRRESL E N FREZEEFHRA,

INRARR BHENG 3, RAULUSLE—TX M MIRPH in 2 BRFLUR TR
HEE,

Exercise 2 4] 2

Read the documentation of the dictionary method setdefault and use it to write a more
concise version of invert_dict. (Solution)[http://thinkpython2.com/code/invert_dict.py].

i — T FHA setdefault FEMMEXRAE, RERAXNAERE—DNERHREAD
invert_dict BI%X, (S#5I4X #3)[http://thinkpython2.com/code/invert_dict.py].

Exercise 3 4.>]3

Memoize the Ackermann function from Exercise 2 and see if memoization makes it possible
to evaluate the function with bigger arguments. Hint: no. (Solution)
[http://thinkpython2.com/code/ackermann_memo.py].

A4 SHAERN#— T E_E 4 3 hAckermanniER, BEE T 25 R
BAMSHE, =B : FT. (HHIK=)
[http://thinkpython2.com/code/ackermann_memo.py]s.

Exercise 4 4. >)4

If you did Exercise 7, you already have a function named has_duplicates that takes a list as
a parameter and returns True if there is any object that appears more than once in the list.
Use a dictionary to write a faster, simpler version of has_duplicates. (Solution)
[http://thinkpython2.com/code/has_duplicates.py].

http://thinkpython2.com/code/invert_dict.py
http://thinkpython2.com/code/invert_dict.py]。
http://thinkpython2.com/code/ackermann_memo.py
http://thinkpython2.com/code/ackermann_memo.py]。
http://thinkpython2.com/code/has_duplicates.py

WMRFHELE TECEN4D, nizE25g— 748U has_duplicates BIEKEL T,
HATNKRMSE, NMREDETREATEESE, ROE,

AFHRE—IERER G LHRE. (#HIK3)
[http://thinkpython2.com/code/has_duplicates.pyl.

Exercise 5 4.)5

Two words are “rotate pairs” if you can rotate one of them and get the other (see
rotate_word in Exercise 5). Write a program that reads a word list and finds all the rotate
pairs. (Solution)[http://thinkpython2.com/code/rotate _pairs.py].

— A MRBEIAFR A ZH/—17, ZADARAY Bad] (ZALFRELIB
rotate_word, F&EFE FEX DA ITEHKEL. . -) o

BE—PEEBGEIR—1T 25K, ARLRIMEI#N L, (HEHKD)
[http://thinkpython2.com/code/rotate_pairs.py].

Exercise 6 4-]6

Here’s another Puzzler from (Car Talk)[http://www.cartalk.com/content/puzzlers]: This was
sent in by a fellow named Dan O’Leary. He came upon a common one-syllable, five-letter
word recently that has the following unique property. When you remove the first letter, the
remaining letters form a homophone of the original word, that is a word that sounds exactly
the same. Replace the first letter, that is, put it back and remove the second letter and the
result is yet another homophone of the original word. And the question is, what’s the word?

THER—/ % B (Car Talk)[http://www.cartalk.com/content/puzzlers]## i :

XE#EXEE 1AW Dan O'LearyBIfi R, BT 4 — %38, XPDE[H—NE
#, ANFERE, AREEUTARMEEM &,

EEH-INFHE, SINRERABERER LA, 4T5FRA—E—#. EH—TE
F&, WREEE—ITFERREE, RAREE-IFEERE, GINE A —TZHH
RAEFMF LA, Bom@mRT, ZEM20E?

Now I’'m going to give you an example that doesn’t work. Let’s look at the five-letter word,
‘wrack.” W-R-A-C-K, you know like to ‘wrack with pain.’ If | remove the first letter, | am left
with a four-letter word, 'R-A-C-K.” As in, ‘Holy cow, did you see the rack on that buck! It must
have been a nine-pointer!’ It's a perfect homophone. If you put the ‘W’ back, and remove the
r,’ instead, you’re left with the word, ‘wack,’ which is a real word, it's just not a homophone of
the other two words.

http://thinkpython2.com/code/has_duplicates.py]。
http://thinkpython2.com/code/rotate_pairs.py
http://thinkpython2.com/code/rotate_pairs.py
http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers]的谜语：

REFRLMRIRE—NE 20 F, anNEF—TAENFEN%E, Twrack] . EEE—
MEE, I NMNEREERE R-A-CKl ., BEEEE-/NFEZREEINZE W-A-C-
Kl , BMARIHAMNANEZTRERE LA, GEETE: ALN@YMBET, REXKX
L\Z\go)

But there is, however, at least one word that Dan and we know of, which will yield two
homophones if you remove either of the first two letters to make two, new four-letter words.
The question is, what’s the word?

BHxMNEAEDE—, Dan Mg EHEN, D 3RREIANERR=ER 1 EZTRF
SLHENFREN£E, FEE, XaHTE 7

You can use the dictionary from Exercise 1 to check whether a string is in the word list. To
check whether two words are homophones, you can use the CMU Pronouncing Dictionary.
You can download it from (Here)[http://www.speech.cs.cmu.edu/cgi-bin/cmudict] or from
(Here)[http://thinkpython2.com/code/c06d] and you can also download (Here)
[http://thinkpython2.com/code/pronounce.py], which provides a function
namedread_dictionary that reads the pronouncing dictionary and returns a Python dictionary
that maps from each word to a string that describes its primary pronunciation. Write a
program that lists all the words that solve the Puzzler. (Solution)
[http://thinkpython2.com/code/homophone.py].

1’]’_JL/U3§2|K§£? J1NFHEEREE PN FREBEEE—INFHEH, BERADELARTE

ERFER L8, ATLH CMU £ E58, TLMERE)
[http://www.speech.cs.cmu.edu/cgi-bin/cmudict] s & (ix)
[http://thinkpython2.com/code/c06d]sk & (X)
[http://thinkpython2.com/code/pronounce.pyl3E T £, ZFHIEHT—1NEA
read_dictionaryBJER%L, ZEB =M% Fi9 8, ABEREL—/ Python ;3 82, R[EOIAYIX
A8 L RBRGH B — A 59 Bl #5912 S F RS,

BE—PERBCREREIFE # R i2 R £, (#HK3)
[http://thinkpython2.com/code/homophone.py].

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://thinkpython2.com/code/c06d
http://thinkpython2.com/code/pronounce.py
http://thinkpython2.com/code/homophone.py
http://www.speech.cs.cmu.edu/cgi-bin/cmudict]或者(这里)[http://thinkpython2.com/code/c06d]或者(这里)[http://thinkpython2.com/code/pronounce.py]来下载，
http://thinkpython2.com/code/homophone.py]。

Chapter 12 Tuples Jt48

This chapter presents one more built-in type, the tuple, and then shows how lists,
dictionaries, and tuples work together. | also present a useful feature for variable-length
argument lists, the gather and scatter operators.

AEZMNEHNZ 3N —MRELR, Jta, HURIIKR, FARMTAMNERRIE, L
Nz B—TIFERERANIE : T KENSIR, REMNDOHEERT.

One note: there is no consensus on how to pronounce “tuple”. Some people say “tuh-ple”,
which rhymes with “supple”. But in the context of programming, most people say “too-ple”,
which rhymes with “quadruple”.

—RIRR JLAMIR %57 tuple Bz 2 BFIL. BAAARL[thpal] S, FLER
Fsuppled BEEB—#ixE. BHEERET, AREE:[tupsl], R Fquadruplel E—
#¥o

12.1 Tuples are immutable ST AI{EEX

Atuple is a sequence of values. The values can be any type, and they are indexed by
integers, so in that respect tuples are a lot like lists. The important difference is that tuples
are immutable. Syntactically, a tuple is a comma-separated list of values:

TAR—RINE, XEATURERS LB, HAERBHRFESEHRS], AT L
RITAMIIRIEERL, —HRNEENX HIRL2TA NI EERH,

TTAREER —RIIAES 2REE :

>>> t
>>> t

Iall lbl, 'C', ldl, lel
Iall lbl, 'C', ldl, lel

Although it is not necessary, it is common to enclose tuples in parentheses:

BEHA—HESETANTREELER, IRTIEBRE,

>>> t
>>> t

To create a tuple with a single element, you have to include a final comma:

BRI N ENTERMRBTA, DABRRELRINLEES :

>>> t1 = 'a',
>>> t1 = 'a',
>>> type(tl)
>>> type(t1)
<class 'tuple'>

A value in parentheses is not a tuple:

RABRSH—TENFRZITA

>>> t2 ('
>>> t2 ('
>>> type(t2
>>> type(t2)

<class 'str'>

a')
a')
)

Another way to create a tuple is the built-in function tuple. With no argument, it creates an
empty tuple:

B—HRENTTHEAMAERFERANER tuple, TIRESHBBRT, BAEBILI—1ZE
HITT A,

>>>
>>>
>>>
>>>

0

tuple()
tuple()

[o i e O o

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements of
the sequence:

WRSHA—1TFF (LLFRFE, FIRSETA) , 2RMREE—1PMUizFITHR
BRI TT4A

>>>
>>>
>>>
>>>
(Ill, IUI, |p|, Iil, |n|, |S|)

tuple('lupins')
tuple('lupins')

[o i o o

Because tuple is the name of a built-in function, you should avoid using it as a variable
name. Most list operators also work on tuples. The bracket operator indexes an element:

tuple ERERKE T, FILMRATEERRIENTER T,
PURI R iz BRI EXRER T A, HRSTLIARESITR

>>>
>>>
>>>
>>>
1 al

[o o o o
—r—
oIl I
[

And the slice operator selects a range of elements.

th iz BRA AT DU Tt ERE — X 5 BT 3R,

>>> t[1:3]
>>> t[1:3]
(Ibl’ ICI)

But if you try to modify one of the elements of the tuple, you get an error:

BINRIRIBIERTAFHNEN TR, MEITRNHEET ¢

>>> t[0] 'A'
>>> t[0] 'A'
TypeError: object doesn't support item assignment

Because tuples are immutable, you can’t modify the elements. But you can replace one
tuple with another:

KT BN REBWE, (RTREBRAESNTHE, BRFTUR S — T TakBnean

JC4,

>>> t
>>> t
>>> t
>>> t
(IAI, Ibl, 'C', Idl, |e|)

11
—_~—

This statement makes a new tuple and then makes t refer to it. The relational operators work
with tuples and other sequences; Python starts by comparing the first element from each
sequence. If they are equal, it goes on to the next elements, and so on, until it finds
elements that differ. Subsequent elements are not considered (even if they are really big).

EEXMNEAEIL T —NEHMITA, ARREtEERT XNHNITA,

KRz BRMERTFTAMAEMES ; Python MEBENTRENEN TR Bttt WRE
F, B T—1TR, KILEE, CEHREITRTRYLE,

BTTRAxHREeRE, EEHNEMTRIEZEET BIERABEA) .

>>> (0,
>>> (0,
True
>>> (I ’)
>>> (I !)
True

ANAN

—~
~

~

~

ANAN

12.2 Tuple assignment JT 28 % /&

It is often useful to swap the values of two variables. With conventional assignments, you
have to use a temporary variable. For example, to swap a and b:

MERIREE, AR N 20X NS, A mAE— e

stAN T ENEH#ITRIEE—
XM FHER#aFfl b :

T =, LLINTE

>>> temp
>>> temp
>>> g
>>> g
>>> b
>>> b

b
b
temp
temp

This solution is cumbersome; tuple assignment is more elegant:
XA RRE RRMAH ; ATaREAMmERET

>>> a, b
>>> a, b

o T
QO

~

The left side is a tuple of variables; the right side is a tuple of expressions. Each value is
assigned to its respective variable. All the expressions on the right side are evaluated before
any of the assignments. The number of variables on the left and the number of values on the
right have to be the same:

ERNE T EBAKN—INTA ; ANERAXNITA, FNEBERL T 53 528
o FEAYMRAANAERET WA G [,

<

ko A

o afo

}

SEARMNN T EFMENBBEL AR —HH,

>>> a, b =
>>>a, b =1, 2,
ValueError: too many values to unpack

I I

More generally, the right side can be any kind of sequence (string, list or tuple). For
example, to split an email address into a user name and a domain, you could write:

BEEHERT, FSALURER—MFS (FFFHE. JIRIETA) o i, BiE
— i, F R 4 e — A 2 B — R, JUAINTIREE SR

>>> addr = 'monty@python.org'
>>> addr = 'monty@python.org'
>>> uname, domain = addr.split('@')
>>> uname, domain addr.split('@"')

The return value from split is a list with two elements; the first element is assigned to uname,

the second to domain.

split FIREE B—NE AN TRMFIEK ; E—DITRBKMEL T uname XN T =, ETAN
44T domain N % £,

>>> uname
>>> uname
'monty’

>>> domain
>>> domain
'python.org'

12.3 Tuples as return values FA 7T R [E &

Strictly speaking, a function can only return one value, but if the value is a tuple, the effect is
the same as returning multiple values. For example, if you want to divide two integers and
compute the quotient and remainder, it is inefficient to compute x/y and then x%y. It is better
to compute them both at the same time.

EAEE, —PDEBREERE— M, BRI NMEZ—NITH, MRMFREIZ N
—X 7T, B, MRBRIREER;mNEHER, +EENRY, WRELFHE xly ULk
X%y TLBRFRMR T, BEFHHERR M HERX &b,

The built-in function divmod takes two arguments and returns a tuple of two values, the
quotient and remainder. You can store the result as a tuple:

E# divmod FleEW A NS, AR —NEANMEMNTTH, XANMED AT
%Déﬁiﬁzo

ALUBEREF# A —TITA

>>>
>>>
>>>
>>>
(2,

divmod(7, 3)
divmod(7, 3)

ot ottt

Or use tuple assignment to store the elements separately:

& AT LA JTLA K A8 SR D B 73X N

>>> quot, rem
>>> quot, rem
>>> quot
>>> quot

divmod(7, 3)
divmod(7, 3)

>>> rem
>>> rem

Here is an example of a function that returns a tuple:

TEHFIFH, REBORE—NITAE S REME

def min_max(t):
return min(t), max(t)

max and min are built-in functions that find the largest and smallest elements of a sequence.
min_max computes both and returns a tuple of two values.

max 1 min 2R EKE, SHE V§JEPE@EE—K4EEE%HE—/J\f§, min_max X MR E
RGN EFER/IME, R & MLVE A TTa KR

12.4 Variable-length argument tuples £ K E 0l %
iSpavpich

Functions can take a variable number of arguments. A parameter name that begins with *
gathers arguments into a tuple. For example, printall takes any number of arguments and
prints them:

KBNS HAILIAERZ D, AESFELRKEATLSHA, TUBMAE R S8
E|l—/NJoarh, A0 printall FLAT LA BUE R Z N EISE, ABIERSMNEITHGE -

def printall(*args):
print(args)

The gather parameter can have any name you like, but args is conventional. Here’s how the
function works:

R LI E A ZINERN X LS, (H args INEHEMBKMIEL, FTEEBR—TFxD
B -

>>> printall(1, 2.0, '3')
>>> printall(1, 2.0, '3')
(1, 2.0, '3")

The complement of gather is scatter. If you have a sequence of values and you want to pass
it to a function as multiple arguments, you can use the *operator. For example, divmod takes
exactly two arguments; it doesn’t work with a tuple:

EREHMHMELMT . MRE—R7INE, ARBIEBENEHZSNISEmEL—
H#, MAUAES a8, il divmod EXRUER NS ; NMEL T —ITHA,
ElEEH#TEERN :

>>> t = (7, 3)
>>> t = (7, 3)
>>> divmod(t)
>>> divmod(t)
TypeError: divmod expected arguments, got

But if you scatter the tuple, it works:

BINRFD X NITA, MALT ¢

>>> divmod(*t)
>>> divmod(*t)

(2, 1)
Many of the built-in functions use variable-length argument tuples. For example, max and

min can take any number of arguments:

BRENBRBEAE TSHKET T HITH, B0 max 1 min ST LUEBEKREEHENS
-

>>> max(1, 2, 3)
>>> max(1, 2, 3)

But sum does not.

{BKFHE sum AT T,

>>> sum(1, 2, 3)
>>> sum(1, 2, 3)
TypeError: sum expected at most arguments, got

As an exercise, write a function called sumall that takes any number of arguments and
returns their sum.

W%, B—1%EH sumall WEHE, LA UERKESHENSH, RE L,

12.5 Lists and tuples 7IXRFITA

Zip is a built-in function that takes two or more sequences and returns a list of tuples where
each tuple contains one element from each sequence. The name of the function refers to a
zipper, which joins and interleaves two rows of teeth. This example zips a string and a list:

zip E— THREERY, ERATHESHWFIENSHY, ARERERE—-NTAIIK, &
SIRPFNTAMBES T MNENFIFHN—P TR, IPREBNRBRZNH, =
BRI & B 3 i B —i,

TEXMIFHR, —PNFRFEM—NIIRED zip I THBEEE T —i -

>>> s = 'abc'
>>> s = 'abc'
>>> t = [0, 1, 2]
>>> t = [0, 1, 2]

>>> zip(s, t)
>>> zip(s, t)
<zip object at Ox7f7d0a9e7c48>

The result is a zip object that knows how to iterate through the pairs. The most common use
of zip is in a for loop:

ZEHABREE R — zip R, ZIRETLLAEERFTERIEE ., zip 2B
Bl for &2 H -

>>> for pair in zip(s, t): ...
>>> for pair in zip(s, t): ...
print(pair) ...

('a', @) ('b', 1) ('c', 2)

A zip object is a kind of iterator, which is any object that iterates through a sequence.
Iterators are similar to lists in some ways, but unlike lists, you can’t use an index to select an
element from an iterator. If you want to use list operators and methods, you can use a zip
object to make a list:

zip A REB—MIENE, EREEMTLUERBENFINR, ERHHIIRE LR,
BEARRTIRZ, RIEEBETRIKEFENBPRIEETR.

NRBATIRNEERFNGE, TLUA zip A REHR—DIIFK :

>>> list(zip(s, t))
>>> list(zip(s, t))
[('a', ©), ('b', 1), ('c', 2)]

The result is a list of tuples; in this example, each tuple contains a character from the string
and the corresponding element from the list. If the sequences are not the same length, the
result has the length of the shorter one.

REEZ—THTAMRBIIR ; EXDFH, BPTEALE T FRHEHHN—IF
B, LURIIFRF st 5 ALER TR,

EREFRNFEIS, BRENERKENRTREN—T,

>>> list(zip('Anne', 'Elk'"))
>>> list(zip('Anne', 'Elk'"))
[C'AY, "E"), ('n', "17), ('n', k)]

You can use tuple assignment in a for loop to traverse a list of tuples:

F for &2r & 7 — N To A FIRM et %, ATLARTTAR EE2H -

t=[(a', 0), ('b', 1), ('c', 2)]
for letter, number in t:
print(number, letter)

Each time through the loop, Python selects the next tuple in the list and assigns the
elements to letter and number. The output of this loop is:

BR2 BiEsFee %, Python #iHFRAET—1ita, ARETERREL TR
?o 12?%5%:8/\];@&&[]—': .

Dalb2c

If you combine zip, for and tuple assignment, you get a useful idiom for traversing two (or
more) sequences at the same time. For example, has_match takes two sequences, t1 and
t2, and returns True if there is an index i such that t1[i] == t2[i]:

WMREEMFEA zip, for BFLURTAWR G, FLEERSEI—FEER st E B & LA EFFIRIK
BEE, LLINTEAIFHE has_match X NEKE, B A DNFEIIN 2EA4ASH, AR
MREE—NRBILE | 15 t1[i] == tL2[i|PROEE :

def has_match(ti1, t2):
for x, y in zip(t1i, t2):
if x == y:
return True
return False

If you need to traverse the elements of a sequence and their indices, you can use the built-in
function enumerate:

WMRIREEH— T FIHMFE TTRUKRE MRS, ATLLRARERNEE enumerate :

for index, element in enumerate('abc'):
print(index, element)

The result from enumerate is an enumerate object, which iterates a sequence of pairs; each
pair contains an index (starting from 0) and an element from the given sequence. In this
example, the output is

Oailb2c

Again.

enumerate EEFHRE B — M FE R, SE2BHENKFY ; F—E#HE—
25| (MOFFIR) UKL EFRIH—N TR, EERTHIBFH, HHEMKAINT :

@ailb2c

12.6 Dictionaries and tuples ;5 #1554

Dictionaries have a method called items that returns a sequence of tuples, where each tuple
is a key-value pair.

FHEAE—NE Y items BI750E, RBE—THTAAKRNFS, §— 1N TaileFid
By — a3,

>>>d = {'a':0, 'b':1, 'c':2}
>>>d = {'a':0, 'b':1, 'c':2}
>>> t = d.items()

>>> t = d.items()

>>> t

>>> t

dict_items([('c', 2), ('a', 0), ('b", 1)])

The result is a dict_items object, which is an iterator that iterates the key-value pairs. You
can use it in a for loop like this:

ERE— dict_items © R, XE—TENEE, ERNAMAEN @A, ALUE for BREM
AZXPNR, TR :

>>> for key, value in d.items():

>>> for key, value in d.items():

Ce print(key, value)
.CcC2a0b1

As you should expect from a dictionary, the items are in no particular order. Going in the
other direction, you can use a list of tuples to initialize a new dictionary:

R Rz ARl T, FHEEBARZEE B BT,
it RERBYE, RELEAIUA— D ITamdIRED b — M F 5

>>>
>>>
{'a': 06, 'c': 2, 'b': 1}

>>> t = [('a', 0), ('c', 2), ('b', 1)]
>>> t = [('a', 0), ('c', 2), ('b', 1)]
>>> d = dict(t)
>>> d = dict(t)

d

d

Combining dict with zip yields a concise way to create a dictionary:

B EMA dict M zip, RBI—MEIFARNGELE

>>> d = dict(zip('abc', range(3)))
>>> d = dict(zip('abc', range(3)))
>>> d
>>> d

{'a': 0, 'c': 2, 'b': 1}

The dictionary method update also takes a list of tuples and adds them, as key-value pairs,
to an existing dictionary.

FHH update TTEHREW—NTAIKR, RELENEHNZETRNE—PEFENT
B,

It is common to use tuples as keys in dictionaries (primarily because you can’t use lists). For
example, a telephone directory might map from last-name, first-name pairs to telephone
numbers. Assuming that we have defined last, first and number, we could write:

B AEFHANEZEE L E (ZELZER Y xMIBERAFERSIR) . b,
— b FHOTBEMMRHN THEK, EFNEBELEFRAN G 558, BOFNELT
last, first #1 number X =M% &, ATLULAM T AEE S A ¢

directory[last, first] = number

The expression in brackets is a tuple. We could use tuple assignment to traverse this
dictionary.

AREEHRMNRERNE—NIoHE,. B LA TTHE L2 B KR 5 X N F,

for last, first in directory:
print(first, last, directory[last,first])

This loop traverses the keys in directory, which are tuples. It assigns the elements of each
tuple to last and first, then prints the name and corresponding telephone number.

TEXNMESFARE TP, XELEETH, ERRIEENTEANTRD 5 A
last 7 first, AE#HEEFUR 2B & £S5,

There are two ways to represent tuples in a state diagram. The more detailed version shows
the indices and elements just as they appear in a list. For example, the tuple ('Cleese’,
'John') would appear as in Figure 12.1.

EREAPRKRRTTANAEE AT, B RMRABRFES IR, SNEETIRS
—#. BlE12.19ERT Tt (Cleese', 'John') .

Figure 12.1: State diagram.

But in a larger diagram you might want to leave out the details. For example, a diagram of
the telephone directory might appear as in Figure 12.2.

HEZE B EMET K, fB4AEEARIE—tLwy, LilssFHEMNERARESERA
12.2Ff 7o

{Cleese’, "John’) —= 08700 100 222
{‘Chapman’, *Graham’) —= 08700 100 222
{Idle’, "Eric) —= 08700 100 222
(Gilliam’, Temy’) —= 08700 100 222
{"Jones’, Temry) —s= 08700 100 222
{'Paiin’,"Michael’) —= 08700 100 222

Figure 12.2: State diagram.

Here the tuples are shown using Python syntax as a graphical shorthand. The telephone
number in the diagram is the complaints line for the BBC, so please don't call it.
B ARBYTTA R Python BYiE AR 23RN, HAN S 552 BBC Mkir# sk, AT
B b NRET d %8,

12.7 Sequences of sequences F5IHFE3

| have focused on lists of tuples, but almost all of the examples in this chapter also work with
lists of lists, tuples of tuples, and tuples of lists. To avoid enumerating the possible
combinations, it is sometimes easier to talk about sequences of sequences.

ZEIFR—BEEHHEITTAARKRNIR, BARZE/LERAENHFHERTHIIRAKITY
=, JCABERBITTAE M KRIIKRAEKBITTH, » T BB EFMENAS, BiBEETLF
FARRHIFE SR A {E—

In many contexts, the different kinds of sequences (strings, lists and tuples) can be used
interchangeably. So how should you choose one over the others?

RZERT, TRAMENFES (FFFH, JIRMTA) STURSRERN, B2zl
i 4% R R U I ?

To start with the obvious, strings are more limited than other sequences because the
elements have to be characters. They are also immutable. If you need the ability to change
the characters in a string (as opposed to creating a new string), you might want to use a list
of characters instead.

M £ BTFIE, FRBLEREMFS, DEENAR, HAYFHFEPHNTRLIGZ

FfF, MEZRATEEN. MRFBENFHEETNFFT (MAREEIL—TMHFR
) , RRiFzE=ERAFRFIIRE,

Lists are more common than tuples, mostly because they are mutable. But there are a few
cases where you might prefer tuples:

TIRAMELLTAENZ, FERATRTLUERNR, BUTXEERT, RrE2HATA
BT :

1. In some contexts, like a return statement, it is syntactically simpler to create a tuple than
a list.

AELEERT, ihREzEH, ATAREEE EERIRE £ RS,

1. If you want to use a sequence as a dictionary key, you have to use an immutable type
like a tuple or string.

IMRIFER—TFIE S FHNG, DHARTANEFHERIFTITEBRE LRI,

1. If you are passing a sequence as an argument to a function, using tuples reduces the
potential for unexpected behavior due to aliasing.

IMRIRBB—NFINE A S — D ERE, ATaAsRERT 7 A ER S BRAE
LT SR B AP

Because tuples are immutable, they don’t provide methods like sort and reverse, which
modify existing lists. But Python provides the built-in function sorted, which takes any
sequence and returns a new list with the same elements in sorted order, and reversed,
which takes a sequence and returns an iterator that traverses the list in reverse order.

HTFTARAAEHRB, FrARIRME sort 1 reverse X # I AL, XLEHEHREEIENR
B2 FEMFIR, {8 Python 12 T REEKE sorted, ZEHEEKERRFT, ARRE—
MEZFIPTREHRFF IR, ZHAEBEITREHK reversed, FW—PFFIA
&R B — A LUE R S AR B AN T R BIE 2R

12.8 Debugging 3%

Lists, dictionaries and tuples are examples of data structures; in this chapter we are starting
to see compound data structures, like lists of tuples, or dictionaries that contain tuples as
keys and lists as values. Compound data structures are useful, but they are prone to what |
call shape errors; that is, errors caused when a data structure has the wrong type, size, or
structure. For example, if you are expecting a list with one integer and | give you a plain old
integer (not in a list), it won’t work.

Sk, FHDKITA, MEHRELHH—LEEL ; EATINTTIE LR ZEE SRR
siH, LCAIAATTAAMENTISR, NESITEFHRMIIREY RENFREST, FE
PR mIEEER, B2 —L42, FIEIME MR M2 ; IMERETE
RHT—IMEIELHPEA T AR RONHELHTEHER, i, MRFEE
—THE—TEMHRBGIER, MBELMR—T2aNERTE (TE2RSIIRN) , B
HE T,

To help debug these kinds of errors, | have written a module called structshape that provides
a function, also called structshape, that takes any kind of data structure as an argument and
returns a string that summarizes its shape. You can download it from Here.

EREBTHRX 242, BET — DN ¥structshape Bz, BRI T —1EH
HE, BREA—FMBIREEHIEASE, RERE—1DFRER L Z22BUBRL T
Ao AILAM X BT H,

Here’s the result for a simple list:

TEHE—MH $£IRHTE

>>> from structshape import structshape
>>> from structshape import structshape
>>> t = [1, 2, 3]

>>> t = [1, 2, 3]

>>> structshape(t)

>>> structshape(t)

'list of 3 int'

A fancier program might write “list of 3 ints”, but it was easier not to deal with plurals. Here'’s
a list of lists:

http://thinkpython2.com/code/structshape.py
http://thinkpython2.com/code/structshape.py

B) RBRRF AT REE f iz B list of 3 ints”, BEFRES2EH T BN TFHIERE. TH
== THIRIZIEK :

>>> t2 [[112]I [314]l [5I6]]
>>> t2 = [[112]I [314]l [5I6]]
>>> structshape(t2)

>>> structshape(t2)

'list of 3 1list of 2 int'

If the elements of the list are not the same type, structshape groups them, in order, by type:

MBHRTHEZAE £, structshape £IRBIGF, IBEF £ BIETIH -

>>> t3 = [1, 2, 8, 4.0, '5', '6", [7], [8], 9]
>>> t3 = [1, 2, 3, 4.0, '5', '6", [7], [8], 9]

>>> structshape(t3)

>>> structshape(t3)

'list of (3 int, float, 2 str, 2 list of int, int)'

Here’s a list of tuples:

TER— Mt :

>>> g 'abc'

>>> g 'abc'

>>> 1t = list(zip(t, s))

>>> 1t = list(zip(t, s))

>>> structshape(lt)

>>> structshape(lt)

'list of 3 tuple of (int, str)'

And here’s a dictionary with 3 items that map integers to strings.

THE—TME=1ANFH, ZFHRIRE T MBREEIFRE,

>>> d = dict(1lt)
>>> d = dict(1lt)
>>> structshape(d)
>>> structshape(d)
'dict of 3 int->str'

If you are having trouble keeping track of your data structures, structshape can help.

NRIREERE CHIEIEL B R, structshapeiX MEIRREAFAES BN,

12.9 Glossary K i&%5I%&

tuple: An immutable sequence of elements.

To4A : —HTRAMBARTIERHIRES,

tuple assignment: An assignment with a sequence on the right side and a tuple of variables
on the left. The right side is evaluated and then its elements are assigned to the variables on
the left.

TCAMAE - — MR EER, FEEAMA—TFI, EMA—T T EHMITTHE. AMNEY
RABRLE#ITEEH, ARXETHRSBAELEMNNT &,

gather: The operation of assembling a variable-length argument tuple.
WE : TEXKER T TARNNTHRENEE,

scatter: The operation of treating a sequence as a list of arguments.
DE: F—DFEIRD R — RIS A KRITI R E B,

Zip object: The result of calling a built-in function zip; an object that iterates through a
sequence of tuples.

fist R - HARERN zip FEHHREILR ; —MB /A TTAFTIBI TR,

iterator: An object that can iterate through a sequence, but which does not provide list
operators and methods.

ERER ER—DNFIA R, IMFITRERMSIRME BN GE.
data structure: A collection of related values, often organized in lists, dictionaries, tuples, etc.
PR —EEXRBENEERF, BERIKR. FAFETAFEI.

shape error: An error caused because a value has the wrong shape; that is, the wrong type
or size.

it BT —TNEBE 2 HT S B2 ; b4 ;2 £ BIskE KN,

12.10 Exercises %)

Exercise 1 %431

Write a function called most_frequent that takes a string and prints the letters in decreasing
order of frequency. Find text samples from several different languages and see how letter
frequency varies between languages. Compare your results with the tables at Here.
Solution.

— % Hmost_frequenttI K, BW—1TFRE, AEAERMERERRITHHEF
! H— ﬁbTﬂwng’]YﬁK?M REEETAZERATEFENMELTILSE K, RE
AR RE x BROBUR 1T 3t tb, BB,

http://en.wikipedia.org/wiki/Letter_frequencies
http://thinkpython2.com/code/most_frequent.py
http://en.wikipedia.org/wiki/Letter_frequencies
http://thinkpython2.com/code/most_frequent.py

Exercise 2 4.>) 2

More anagrams!
BZ 54087 |

1. Write a program that reads a word list from a file (see Section 9.1) and prints all the sets
of words that are anagrams.

BE—1PEE, - 1MXHFN—1N£[5K (5E9.1) , REHEMENE LA,
Here is an example of what the output might look like:
TEZ A RERY 4 AR VAT

[deltas', 'desalt’, 'lasted’, 'salted’, 'slated’, 'staled'] ['retainers', 'ternaries'] ['generating’,
'greatening'] [resmelts’, 'smelters’, 'termless'] Hint: you might want to build a dictionary that
maps from a collection of letters to a list of words that can be spelled with those letters. The
question is, how can you represent the collection of letters in a way that can be used as a
key?

RR R AU — N FH, RE—MEENTFRAGE—1 295K, £:951K
R E A DA EFARHELR, BLFERT, NMAERTEIPMFENES,
BEIL X NERARERAFFHA—ME ?

1. Modify the previous program so that it prints the longest list of anagrams first, followed
by the second longest, and so on.

B — T aIlER, LM TALANRPRERRN, RE2HRKE, KibEH,

1. In Scrabble a “bingo” is when you play all seven tiles in your rack, along with a letter on
the board, to form an eight-letter word. What collection of 8 letters forms the most
possible bingos? Hint: there are seven. Solution.

EHFBESH, BRELFEINFENE, BRN—NFEMeEaAR— NN\ 1TFEH
#33, iXF TMD Tbingod 7 (H2RAFE? BAEHFHEMEBER—#, BEZOX
T) o REHR/\NFREEGEEFTESE bingo? R : HtD., (HEMRA—EN
ME, MART, XBEBBEHARESTHREFT,)

Exercise 3 4] 3

Two words form a “metathesis pair” if you can transform one into the other by swapping two
letters; for example, “converse” and “conserve”. Write a program that finds all of the
metathesis pairs in the dictionary. Hint: don’t test all pairs of words, and don't test all
possible swaps. Solution. Credit: This exercise is inspired by an example at Here.

http://thinkpython2.com/code/anagram_sets.py
http://thinkpython2.com/code/metathesis.py
http://puzzlers.org

mNEE, MREPF—MNETALANERLEFRERY ZHA—D, BRT —1 MRk
std o MU ERBUCE 8 BT AR X IR e xt, 1B - ARNGRAIAERE , R
R XFrE e eI B B AR, B, B4 : K&k JZ gL TXEMN—MIF,

Exercise 4 4] 4
Here’s another Car Talk Puzzler:
BETRRE— R E BT

What is the longest English word, that remains a valid English word, as you remove its
letters one at a time? Now, letters can be removed from either end, or the middle, but you
can’t rearrange any of the letters. Every time you drop a letter, you wind up with another
English word. If you do that, you're eventually going to wind up with one letter and that too is
going to be an English word—one that’s found in the dictionary. | want to know what'’s the
longest word and how many letters does it have?

—PREX %9, BREE—NFHE, XNz2—PNEMIRX$E, X208 7

AREETRFEALUMLER, WIUMEKEEE, sEBMFE, BREEFHETIEHM
FHB, BREE-NFHE, BIWI—NFNREXE[F, RERLIFIN—1FE, #
FRR—NRX $5), XDEFWEEEHRPHRE, FEXHBERNEAFZL ?7REKD
=N ?

I’'m going to give you a little modest example: Sprite. Ok? You start off with sprite, you take a
letter off, one from the interior of the word, take the r away, and we’re left with the word spite,
then we take the e off the end, we’re left with spit, we take the s off, we’re left with pit, it, and
l.

BAR— P EEH/INMEIF : Sprite, X MARHE LEBIFRM. B rEET 2 spite, EiF
ZEM e 2 spit, E£iF s FEIMEZE pit, it, AE=ZE |,

Write a program to find all words that can be reduced in this way, and then find the longest
one. This exercise is a little more challenging than most, so here are some suggestions:

BE—PEBHEMAENX £, RAEHRIEPRLH—T,
EDA S HE—REI4 3 DL, FRULTEZ —ERR

1. You might want to write a function that takes a word and computes a list of all the words
that can be formed by removing one letter. These are the “children” of the word.

FEAREE—TEY, - 1T2aREtE—Tx N eARE—1TFRERE 24
ARRBISISR, FURAIX L 3 mAI ARG £5 BB F —#o

1. Recursively, a word is reducible if any of its children are reducible. As a base case, you

http://thinkpython2.com/code/metathesis.py
http://puzzlers.org
http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers

can consider the empty string reducible.
RE- 2MBRFEHIUER, BEDLAKRTH T HR. RALUAYEFREZH
PAlgg A B9, X HRAEH —DEMERM

1. The wordlist | provided, words.txt, doesn’t contain single letter words. So you might
(lI”, [

want to add a”, and the empty string.

FEEIZHER words.txt ZMNEAR, TESE2NFEREN L5, FILUMREEZEBTARMIL a
DRZEF/FELEE,

1. To improve the performance of your program, you might want to memoize the words
that are known to be reducible.

ZIRSEFMENE, FREFE#EFE2EH TR Y5 %A £,
Solution.

BB,

http://thinkpython2.com/code/reducible.py
http://thinkpython2.com/code/reducible.py

Chapter 13 Case study: data structure
selection E£fIF 5 : L WAL B

At this point you have learned about Python’s core data structures, and you have seen some
of the algorithms that use them. If you would like to know more about algorithms, this might
be a good time to read Chapter 13. But you don’t have to read it before you go on; you can
read it whenever you are interested. This chapter presents a case study with exercises that
let you think about choosing data structures and practice using them.

EMAEME, IREZ2F it Python PFRZOHEBIELE KT, BFER T 8522 mB&H
HET, MRMBENEE#ITRANTRE, AR E—THE+=F, BFezx—%F
WA LAg 4 5 Tt otz &R el LA, Rt T RRFENH,

AEBE —PIROAFM—LE4% 7, KRBT EMERETEL M.

13.1 Word frequency analysis 13 5l 4t it

As usual, you should at least attempt the exercises before you read my solutions.

REE—#, MRESHBTAECZAB—TrE4y, REHESEEX.

Exercise 1 4 -] 1

Write a program that reads a file, breaks each line into words, strips whitespace and
punctuation from the words, and converts them to lowercase.

BE—1TiBX4iER, BE—TiRIR—11HE, ZEZAMERRES, REIEMA
¥ 53 BB 4% 5 BN B R,

Hint: The string module provides a string named whitespace, which contains space, tab,
newline, etc., and punctuation which contains the punctuation characters. Let’s see if we can
make Python swear:

IR FRSEEY: string IREE T — 1% # whitespace WFEMH, 857 22K, PR,
BE—1TFE, ABEZEED punctuation &3, BE T EMirRRFSHFER. ALK
iXik Python 4z RfFSEL ETR—TF ¢

>>> import string

>>> import string
>>>string.punctuation
>>>string.punctuation

PEUES%! () *+, -/ <=>2@ N1 {13!

Also, you might consider using the string methods strip, replace and translate.

7R A LUX X F RSB RE AR AR, A0 strip. replace LUK translate,

Exercise 2 #4.-]2

Go to [Project Gutenberg] (http://gutenberg.org) and download your favorite out-of-copyright
book in plain text format.

17 [B+ X ML) (http://gutenberg.org), ARBE T & —MEREXH LB HITHIH,
B T X F g,
Modify your program from the previous exercise to read the book you downloaded, skip over

the header information at the beginning of the file, and process the rest of the words as
before.

BR—TRF E—N4&JMRENER, X MEFEEIRTHXARS, Bt X477
LEOEER, Sl ENAJHPMARARLE-TEXHHIIEX,

Then modify the program to count the total number of words in the book, and the number of
times each word is used.

REBER—TRER, 1EFEL T —TEFRBNLE £ 8E8, UREDN£:[HR
#,

Print the number of different words used in the book. Compare different books by different
authors, written in different eras. Which author uses the most extensive vocabulary?

MH—TRARPPRREEN £ NN, dE—TARREEE. TR HE, FMMF
BHRALERFER?

Exercise 3 4.3

Modify the program from the previous exercise to print the 20 most frequently-used words in
the book.

BESEBRER, mH—TE8ARHPHEMEL 2019,

Exercise 4 4.4

Modify the previous program to read a word list (see Section 9.1) and then print all the words
in the book that are not in the word list. How many of them are typos? How many of them
are common words that should be in the word list, and how many of them are really
obscure?

http://gutenberg.org
http://gutenberg.org)，然后下载一个你最喜欢的公有领域的书，要下载纯文本格式的哈。

EEER, LEFEEIR— 25K (559.1) , AEhE—THREEESELEH, A
AEET £ AERPH 27, BExELARELSVEHREZN?BZIRRLH L
AIREENER 27 ? LV EREZRIRIZE 7L 7

13.2 Random numbers FEHLEX

Given the same inputs, most computer programs generate the same outputs every time, so
they are said to be deterministic. Determinism is usually a good thing, since we expect the
same calculation to yield the same result. For some applications, though, we want the
computer to be unpredictable. Games are an obvious example, but there are more.

WMAERNERT, REHHENREFERARALLERNKE, xUMEBEYE.
EMEBER—HHSE, EABRNBARERFNEcE>ERAENLEH. BREY T L
BEMRS, ANATELHENEERT RN, HIEXFS, ARZBREIFNIGE

=
o

Making a program truly nondeterministic turns out to be difficult, but there are ways to make
it at least seem nondeterministic. One of them is to use algorithms that generate
pseudorandom numbers. Pseudorandom numbers are not truly random because they are
generated by a deterministic computation, but just by looking at the numbers it is all but
impossible to distinguish them from random.

A, Bit—PMREFEETRATRUN, BEREWN, BEER I ERILIEFELE
ARIAE, HP—MAEmEdi BIEK > £BRENE. BREVE, m&BLAER
=EERENNT, BHen2dd —MREENz FREGIN, ExEHFELERR
B, BxeS5EERNBEIEXD,

(3EFF FBERRREZ—F M, MAERRIEEFEREZERINE. =L
B ESESIUREEFERT AT, TAEMATNLEFF. BLRENL
ARBEMER—T, BIHREE> ENRNBHEERINEEFTLERRNX 5], Uk
=AHAMESIEENREIR, RE, NAESEIE?)

The random module provides functions that generate pseudorandom numbers (which | will
simply call “random” from here on).

random 3R 1RME T A RRRFEHLEBIREY (Mx B FFE, 40170 FABEALECE & FMERBELE
Tué) o

The function random returns a random float between 0.0 and 1.0 (including 0.0 but not 1.0).
Each time you call random, you get the next number in a long series. To see a sample, run
this loop:

BE random IRE—/NE0.0EM.0MBET A E X 1 (FAE2SiE0.0(ER3HE1.0, XN
1 Python BEk #B2, LLUIFFIMIZREIESE) HIBENE, =XRAH random, BREEI—
MR R HIEFIR T —N . MTFXNMEFRE—MIFT -

import random for i in range(10):
X = random.random()
print(x)

The function randint takes parameters low and high and returns an integer between low and
high (including both).

randint B R A DNSEIEA TRMLER, RERE—NZEHZ BB, xPBHA
J’/LIE—F _\Z%J:Jlo

>>> random.randint(5, 10)
>>> random.randint (5, 10)

>>> random.randint (5, 10)
>>> random.randint (5, 10)

To choose an element from a sequence at random, you can use choice:

choice EE AT LA EM—DFF HfEN % H— P TTk -

>>> t = [1, 2, 3]
>>> t = [1, 2, 3]
>>> random.choice(t)
>>> random.choice(t)

>>> random.choice(t)
>>> random.choice(t)

The random module also provides functions to generate random values from continuous
distributions including Gaussian, exponential, gamma, and a few more.

random &3k ir 1R T HML—LEEE, TLUHER LA 50 mBkEN 4, tbilGaussian
= HT2 6, exponentiali§ 84 75, gamma y2 R EE,

Exercise 5 4. >)5

Write a function named choose_from_hist that takes a histogram as defined in Section 11.2
and returns a random value from the histogram, chosen with probability in proportion to
frequency. For example, for this histogram:

— % %4 choose_from_hist BIENE, FXNEBUERKE—T11.2/0E LHIFA
hlstogramIM Mhistogram 8948 & AR F—1, XDt FRIBISRIRR L BIRE.
L6407 3% 4 histogram :

>>>t= lal, lall Ibl]
>>>t= lal, lall Ibl]
>>> hist = histogram(t)
>>> hist = histogram(t)
>>> hist
>>> hist

{'a': 2, 'b': 1}

your function should return ’a’ with probability 2/3 and 'b’ with probability 1/3.

{RBVERENSL 2 %R [Bla BUBEER 4 2/3, R[EIb BIBEE 4 1/3

13.3 Word histogram i3] 37

You should attempt the previous exercises before you go on. You can download my solution
from Here.

REEREIENA I FE—T, RAEBs#sR, TUMXEBETHRAELIKD,
You will also need This.

e BT X
Here is a program that reads a file and builds a histogram of the words in the file:

TEXMEFTEI—INXMH, RETZXXEPREM#TT £it

import string
def process_file(filename):
hist = dict()
fp = open(filename)
for line in fp:
process_line(line, hist)
return hist
def process_line(line, hist):
line = line.replace('-', " ')
for word in line.split():
word = word.strip(string.punctuation + string.whitespace)
word = word.lower ()
hist[word] = hist.get(word, 0) + 1
hist = process_file('emma.txt")

This program reads emma.txt, which contains the text of Emma by Jane Austen.
EFEXNMEF IR emma.txt X DH, ZXHRE G ERETTHN G (XE) .

process_file loops through the lines of the file, passing them one at a time to process_line.
The histogram hist is being used as an accumulator.

process_fileiX NERHLE K BN XM, FiTizE, ABIBEBITHRNS % 4 process_lineix
8, # M5 hist EiziEFHE— DRSS

http://thinkpython2.com/code/analyze_book1.py
http://thinkpython2.com/code/analyze_book1.py
http://thinkpython2.com/code/emma.txt
http://thinkpython2.com/code/emma.txt

process_line uses the string method replace to replace hyphens with spaces before using
split to break the line into a list of strings. It traverses the list of words and uses strip and
lower to remove punctuation and convert to lower case. (It is a shorthand to say that strings
are “converted”; remember that string are immutable, so methods like strip and lower return
new strings.)

process_linefE FAFRIEM L replaceiB & M2 FRIEMAERE 5, AR split HEIE
BTN — 1 FRETIR, BFEHEN 275K, AEA strip # lower X & NAE
BIRT RS, FEIBMETESBZB/NEN, (—EEoE B Tkl
ERAEME, ErmrLtHTEEHR, BeEFHEERPAATLUENB, strip # lower X L&
FEEREIRE T HNFERER, —EEelF!)

Finally, process_line updates the histogram by creating a new item or incrementing an
existing one. To count the total number of words in the file, we can add up the frequencies in
the histogram:

x4, process_line REUE I BIFANERMEEGH, tFH%it histogram #1777
B3,

B BB 25 280, LA LUE histogram R RIFRA SREUNE —&EF T LT -

def total words(hist):
return sum(hist.values())

The number of different words is just the number of items in the dictionary:
FEENEANEREHARFHPABDET :

def different_words(hist):
return len(hist)

Here is some code to print the results:

WS RIKAMT :

print('Total number of words:', total words(hist))
print('Number of different words:', different_words(hist))

And the results:

SERINTAIR

Total number of words: 161080
Number of different words: 7214

13.4 Most common words & & FAf % 53]

To find the most common words, we can make a list of tuples, where each tuple contains a
word and its frequency, and sort it. The following function takes a histogram and returns a
list of word-frequency tuples:

ERIRERNE, TUE—ITadR, B—Nmaas— N %E i £ Ha R
#H, RAREE-TxNIKR, HATLUT,

TEHRSEMER T @Mt &R, RRERE—D 38R TTHEEMRBIZIEK

def most_common(hist):
t =11
for key, value in hist.items():
t.append((value, key))
t.sort(reverse=True)
return t

In each tuple, the frequency appears first, so the resulting list is sorted by frequency. Here is
a loop that prints the ten most common words:

xETTEF, BEE EAH, RONIIKRALREDHEEF, TEAR— M HERER
33 Y TE R E

t = most_common(hist)

print('The most common words are:')

for freq, word in t[:10]:
print(word, freq, sep='\t')

| use the keyword argument sep to tell print to use a tab character as a “separator”, rather
than a space, so the second column is lined up. Here are the results from Emma:

b2 BT =429 sep ik print # HAY R L —MabBkRFRE A DR, MAE—NZE
1, IHEBIIMENF. FTEMES (LB) IXRNEHLTER

(FEE : IPMERTE Python FRBEBE, Lk markdown R FFIREGE, RNERME:

o)

The most common words are:

to 5242
the 5205
and 4897
of 4295
i 3191
a 3130
it 2529
her 2483
was 2400

she 2364

This code can be simplified using the key parameter of the sort function. If you are curious,
you can read about it at Here.

WNREMA sort KNI key S8, LERAxTU#—F Fib, MMRIRFFRE, AU
it — & 15— N LB

13.5 Optional parameters it FIS]

We have seen built-in functions and methods that take optional arguments. It is possible to
write programmer-defined functions with optional arguments, too. For example, here is a
function that prints the most common words in a histogram:

BNELEBIFZEARSHENRERBNAET, 2rLainBEtRAllE, B
BA#SHNEELEHH, WINITEMZE —MRIEMEIERL T &E H 273

def print_most_common(hist, num=10):
t = most_common(hist)
print('The most common words are:')
for freq, word in t[:num]:
print(word, freq, sep='\t')

The first parameter is required; the second is optional. The default value of num is 10. If you
only provide one argument:

EFEXPHEF, B—ISHELHHAN MEZNSHMET LT, EZNSH
num BIBRIA &2 10.

MRARHEBE TS

print_most_common(hist)

num gets the default value. If you provide two arguments:

XA num BLAERIAE T, MRBHANSE

print_most_common(hist, 20)

num gets the value of the argument instead. In other words, the optional argument overrides
the default value. If a function has both required and optional parameters, all the required
parameters have to come first, followed by the optional ones.

ZH num BLRASBUERIRE T #AiE3, A SBAUBERINE.

MR- EHBEAN A VFSENT LS, ROAEE LR, BoFSHE
EHMEEIE, MATNSEREREIEE.

https://wiki.python.org/moin/HowTo/Sorting
https://wiki.python.org/moin/HowTo/Sorting

13.6 Dictionary subtraction 22 :8;%

Finding the words from the book that are not in the word list from words.txt is a problem you
might recognize as set subtraction; that is, we want to find all the words from one set (the
words in the book) that are not in the other (the words in the list).

BN FEET AP, BEAIIEXMH words.txt #5351k A, HxEEGHRAR
Y, MM E2TRIET, XR—MEEHAZE EREEM—TEES (BEEH)
PRAETE 7 — MRS (BRELAJR) 2E/%4,

subtract takes dictionaries d1 and d2 and returns a new dictionary that contains all the keys
from d1 that are not in d2. Since we don’t really care about the values, we set them all to

None.

TEHRAHFELH subtrac tX NERE, WA DFHE 170 d2, AFERE—DEHF
H, IMHFHISHAE dIPEEM 2P RS04, amTrmig T, mELEYZE

Blwl,

def subtract(di, d2):
res = dict()
for key in di:
if key not in d2:
res[key] = None
return res

To find the words in the book that are not in words.txt, we can use process _file to build a

histogram for words.txt, and then subtract:

ZHEH P EAMmwords.txt FAREZHER £33, FARILLA process_file BECREIL— 1
words.txt B33 543+, SRS F subtract EREURAE A,

words = process_file('words.txt')
diff = subtract(hist, words)
print("words in the book that aren't in the word list:")

for word in diff.keys():
print(word, end=' ')

Here are some of the results from Emma:

TEHKRARZZ (XB) FEINL

Words in the book that aren't in the word list:
rencontre

jane's

blanche

woodhouses

disingenuousness

friend's

venice

apartment

Some of these words are names and possessives. Others, like “rencontre”, are no longer in
common use. But a few are common words that should really be in the list!

2

XE AEHNRAFHEMERZ LM, B4 —LE, b Trencontrel , #EAER
BLBERANT., Ttz S22l ERAMN, B zBIRmMaEsSH !

Exercise 6 4°]6

Python provides a data structure called set that provides many common set operations. You
can read about them in Section 19.5, or read the documentation at Here.

Python 12t 7 — 1M 8UiE2 ¥l set (BE) , 1 BRHETESEILNESEZE, T
£19.50&—TF, HEHz— FTXEMNEAXHE,

Write a program that uses set subtraction to find words in the book that are not in the word
list. Solution.

E—1MEFE, ARANAZL, EH—THPhaamilRFIraInE9E, #EK
L’% o

13.7 Random words 4 % ;3

To choose a random word from the histogram, the simplest algorithm is to build a list with
multiple copies of each word, according to the observed frequency, and then choose from
the list:

ZMRABIE R — NV £49, & ENEERERES NN LA RERFTE L
A EEES R DBEIE, REEER—TIIR, MIIRPERFET

def random_word
t =[]
for word, freq in h.items():
t.extend([word] * freq)
return random.choice(t)

The expression [word] * freq creates a list with freq copies of the string word. The extend
method is similar to append except that the argument is a sequence.

http://docs.python.org/3/library/stdtypes.html#types-set
http://docs.python.org/3/library/stdtypes.html#types-set
http://thinkpython2.com/code/analyze_book2.py
http://thinkpython2.com/code/analyze_book2.py

EERZFRB[word] * freqRix NEIL T —NIIK, FIRPERFE £ HE L REEIER
EHI:8 ., extend AL append AEMEE, X3 2RIENSHE—1TFY, mMEHE
B2 WMt

This algorithm works, but it is not very efficient; each time you choose a random word, it
rebuilds the list, which is as big as the original book. An obvious improvement is to build the
list once and then make multiple selections, but the list is still big.

FEXDMEEAEER, BRERTERTELF ; BReEBEN L0 R, BFEHESE
BIR, ZMNRMIBEH—HKRT, REAR, —RUEILIIR, MBRERZFIRE
#HITHF, IHEFPARNE, BHIRKAZZRK,

An alternative is:
%R BEIT -
1. Use keys to get a list of the words in the book.
P4 SR T7 4% 5 R 239 B9BIER,

1. Build a list that contains the cumulative sum of the word frequencies (see Exercise 2).
The last item in this list is the total number of words in the book, n.

BEI—MNIR, RS EMEAMNRMEN (BE452) . ZIRNKRF—TTT
R PR EANEHE N,

1. Choose a random number from 1 to n. Use a bisection search (See Exercise 10) to find
the index where the random number would be inserted in the cumulative sum.

#wFE—ME n Z A WENE, ERITFERER (B3F4310) , HEEHBERT L
AT ERIZRB] A,

1. Use the index to find the corresponding word in the word list.

A% 3R B E KB £33 FUR A 23 2 B9 #3539

Exercise 7 4. 57
Write a program that uses this algorithm to choose a random word from the book. Solution.

BE—1iERF, BLEEEHNEERERM—K S PNk £, #61(CE,

13.8 Markov analysis & & ko #i%

If you choose words from the book at random, you can get a sense of the vocabulary, but
you probably won'’t get a sentence:

http://thinkpython2.com/code/analyze_book3.py
http://thinkpython2.com/code/analyze_book3.py

SOREARM—A 4 rplEN kit —LE %57, X2 ZRaEHRAR, (BMh i+ 2 AR —A)i% -

this the small regard harriet which knightley's it most things

A series of random words seldom makes sense because there is no relationship between
successive words. For example, in a real sentence you would expect an article like “the” to
be followed by an adjective or a noun, and probably not a verb or adverb.

—RIENRBDREAREANE, HAXLE L ERERFEEHLXR, A0, K
BER, ©i9 the FE L ZERET A HERHE, MANZEHEHER .

One way to measure these kinds of relationships is Markov analysis, which characterizes,
for a given sequence of words, the probability of the words that might come next. For
example, the song Eric, the Half a Bee begins:

MR RRN—MAEMELRRDNTE, X—AEME : YL EMNE:5F5,
SH—NREE 3 — A EEE iR, i, Eric, the Half a Beeix BaRBYFF 3% :

Half a bee, philosophically,
Must, ipso facto, half not be.
But half the bee has got to be
Vis a vis, its entity. D’you see?
But can a bee be said to be

Or not to be an entire bee

When half the bee is not a bee
Due to some ancient injury?

In this text, the phrase “half the” is always followed by the word “bee”, but the phrase “the

W

bee” might be followed by either “has” or “is”.

FELEEBXAAR, T[halfthel X8 AGHE L 2EE lbeel , {Hig 4 lthe beed FE
L2 Thas) , thelllZ Tisd .

The result of Markov analysis is a mapping from each prefix (like “half the” and “the bee”) to

all possible suffixes (like “has” and “is”).

LRIXDITHNEREMENEIE (b0 Fhalf thed #1 Tthe beeld) RIFFEATRERIER
(tbtn Thasd #0 FisJ) BYBRET,

Given this mapping, you can generate a random text by starting with any prefix and
choosing at random from the possible suffixes. Next, you can combine the end of the prefix
and the new suffix to form the next prefix, and repeat.

BT x—BRE, ML LGS AT, BERNRIRTT L, REMATENERPHE

Mig—1. FT—RMIBESZMRKENFNERSEERX, FHrFNLR, AREELE
5 5%,

For example, if you start with the prefix “Half a”, then the next word has to be “bee”, because
the prefix only appears once in the text. The next prefix is “a bee”, so the next suffix might be

“philosophically”, “be” or “due”. In this example the length of the prefix is always two, but you
can do Markov analysis with any prefix length.

pign, fRAAETZ THalf al RKFFtE, ETRMFL5E (beeld T, AAXPRIRRE
XAFRHR T —R, TETR, BEIRT, BIBRMELKT Fabeel T, FRLAETRMES
AT LAZ [philosophically] , Thed =& [duel .

FEXANPIFA, AIARNKELERN £, BRTUMLER KENIAKRAT LIRS
*ﬁ-o

Exercise 8 4.8
Markov analysis:
LRRDH

1. Write a program to read a text from a file and perform Markov analysis. The result
should be a dictionary that maps from prefixes to a collection of possible suffixes. The
collection might be a list, tuple, or dictionary; it is up to you to make an appropriate
choice. You can test your program with prefix length two, but you should write the
program in a way that makes it easy to try other lengths.

BE—1MER, IR AR, AE#HITIRXRIM. sRuze— 1" FH, MBIK
Bl —AIREM B R A B FE IR, XAFIIRTAZSIK, A, theLIEFHE ; {R
BOX#&#EEN X BRERE, RAILIAAD 28 K ENISENXIFNER, Ba
ZGLREFRES RAEEM K EHNRIAK.

1. Add a function to the previous program to generate random text based on the Markov
analysis. Here is an example from Emma with prefix length 2:

ELEMREFRRRIN—IEY, ET3RXoTREXEINXAR, TEEMA (X)) &
FA /A 3 39) K B BIRT 4R E B — DRENL I A4

He was very clever, be it sweetness or be angry, ashamed or only amused, at such a stroke

A . s

For this example, | left the punctuation attached to the words. The result is almost
syntactically correct, but not quite. Semantically, it almost makes sense, but not quite.

XN FR, BREBT 2AREBENAFRTES. SREMNEREEELEEAZIERM, B
HirZER, EXL L, XLeEARFNTEE—LEL, BHEREZ,

What happens if you increase the prefix length? Does the random text make more sense?

INRIGIMATHB) %35 K ERELH ?EIXAZRT 2 sk E@IRE ?

1. Once your program is working, you might want to try a mash-up: if you combine text
from two or more books, the random text you generate will blend the vocabulary and
phrases from the sources in interesting ways.

—BRNEFER T, RAULLUKKEE—T IRFIEAFLU LN S SFFER, £
BENL X AL S URB BT M S FRIRE S £ 18 M5 R £ BV A,

Credit: This case study is based on an example from Kernighan and Pike, The Practice of
Programming, Addison-Wesley, 1999.

Bl : 3 PRAFERZETFKernighan # Pike 7£ 19994 FHAddison-Wesley H kg £t H AR B4
{The Practice of Programming) — 4 FEY—MJF,

You should attempt this exercise before you go on; then you can can download my solution
from Here. You will also need This, the txt file of Emma.

fRE % BRI 2 X — T X% 5, REB®L: ; RARMAUTHEZEMANSD, 554
RAEFE T H (LB ZIERHBIXARM

13.9 Data structures ##E 2 #

Using Markov analysis to generate random text is fun, but there is also a point to this
exercise: data structure selection. In your solution to the previous exercises, you had to
choose:

FRLRROTERERBEINXARERRYN, BEXN44I 58 2H—1NER : BELEH
HikiE, ERIEXEL A, MUABELEFUTHRE

e How to represent the prefixes.

AR RN AT 4

¢ How to represent the collection of possible suffixes.

IERTARREANES,

e How to represent the mapping from each prefix to the collection of possible suffixes.
NERTEDRIAS 0 RERES Z | KBRS,

The last one is easy: a dictionary is the obvious choice for a mapping from keys to
corresponding values.

RE—THREET HAERAzAFRT, XFRKIEEDRREEI ZHZ M,

http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/emma.txt
http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/emma.txt

For the prefixes, the most obvious options are string, list of strings, or tuple of strings.
AIZMt4E, AR AILAMERFRER. FRFIIR, NEFRHEITA,
For the suffixes, one option is a list; another is a histogram (dictionary).

Fan%F, BL2ASIR, BLmA 40125 BY:#37EKE histogram (X PMEZED
FH)

How should you choose? The first step is to think about the operations you will need to
implement for each data structure. For the prefixes, we need to be able to remove words
from the beginning and add to the end. For example, if the current prefix is “Half a”, and the
next word is “bee”, you need to be able to form the next prefix, “a bee”.

ZVERIE? BE—FTEE— T, EMEBELnEITERE Lz E, tLilstarskit,
GAIFLISRE IR L ER, ABRERERNINF A, Flm, MARENRILE MHalfal , #T
K252 Tbeel , FLISRES AR F—1RI%, thFEt2Z [abeeld .

Your first choice might be a list, since it is easy to add and remove elements, but we also
need to be able to use the prefixes as keys in a dictionary, so that rules out lists. With tuples,
you can’t append or remove, but you can use the addition operator to form a new tuple:

RE®MATMEINRT, AHIRREZIGMABIGRTIR, ERI1EFEERARIARN
FHARLGE, FTLBIRMAGHE T, BMRITA T, TARIERNMMBFRITSR, EHALL
A%z BRFREILHHITTA,

def shift(prefix, word):
return prefix[1:] + (word,)

shift takes a tuple of words, prefix, and a string, word, and forms a new tuple that has all the
words in prefix except the first, and word added to the end.

EEX A shift HE, FW—D£80704H, BRENR, REZER—INFREHE, Bl
B#AT, REWH—THHTA, REBRENRIREELS, AL aEIRE

B,

For the collection of suffixes, the operations we need to perform include adding a new suffix
(or increasing the frequency of an existing one), and choosing a random suffix.

stHEBMEEE Y, BNEE#ATHNEEERERNIFHNER (HEBEBN—1NEEEAH
BOR) , ARELF—IREVIEZ.

Adding a new suffix is equally easy for the list implementation or the histogram. Choosing a
random element from a list is easy; choosing from a histogram is harder to do efficiently (see
Exercise 7).

wIFER, EhERIKREERARTHE, TAERB—HED. TIMIIRPRE
—MHENTRRES ; BMARTFRPEEHEITREZAEBRATIEKERRT (554
}77) o

So far we have been talking mostly about ease of implementation, but there are other factors
to consider in choosing data structures. One is run time. Sometimes there is a theoretical
reason to expect one data structure to be faster than other; for example, | mentioned that the
in operator is faster for dictionaries than for lists, at least when the number of elements is
large.

BRIHIE, AT Rk, EXd8iELnNtErEZ E—LHEHMNER, il
Z{Tet), AREEZ LE L ENRENRE &, RIFHOBIELSHEILEMBIIR ; 03k
ZAETRET in 2 BRAEFHRABRLIIRPEEIR, RESLYTREERSHHERER
Iljj%O

But often you don’t know ahead of time which implementation will be faster. One option is to
implement both of them and see which is better. This approach is called benchmarking. A
practical alternative is to choose the data structure that is easiest to implement, and then
see if it is fast enough for the intended application. If so, there is no need to go on. If not,
there are tools, like the profile module, that can identify the places in a program that take the
most time.

B—RIERT, BNTEERIIEER—FEn FERERR, R A MEE H
¥, RFEITHE—T, BEIEFRMR, ZMAEMUTLENX. A4 —FAER%
— M eaERRE ENBIEL Y, RAEEEETERERTEREMHEMNENR, WRA
B, MIAHEBR#T, MRRERASIR, MsHAE—LTE, il profile &3k, KFIEF
TR L BB HAE T ;R Z i 1T 6t 1A,

The other factor to consider is storage space. For example, using a histogram for the
collection of suffixes might take less space because you only have to store each word once,
no matter how many times it appears in the text. In some cases, saving space can also
make your program run faster, and in the extreme, your program might not run at all if you
run out of memory. But for many applications, space is a secondary consideration after run
time.

LA BEEEHN—IPMRRABEHREE T, WA RFHRIEYEREEATES
—LEFnTE, RATAXELATRRELN TSR, BaFRPE LA REH—
Re BRERT, HAZERHELFNERETER, AT —LRIHERT, LN
F#HRT, IRNBFMBRATLTEEZITT., Pt KSEm AR, BRAEE EEITH
B, FHEIRERERKRT.

One final thought: in this discussion, | have implied that we should use one data structure for
both analysis and generation. But since these are separate phases, it would also be possible
to use one structure for analysis and then convert to another structure for generation. This

would be a net win if the time saved during generation exceeded the time spent in
conversion.

REBEE—T £XH, BE2BRT, anaBZEMSEsw, EFXRoWNNE
o B —ER29FNL %, FTUBA LSRR —FEEEL 4, MERNHES
BB BN — M, RELEREHR S B0V 8 it it 4530 ATTE & BT), iz TR
REXIER,

13.10 Debugging &%,

When you are debugging a program, and especially if you are working on a hard bug, there
are five things to try:

AR NEFRNHE, THEEFE 5 = IR 5 @iz, BUTAEANSBE—EEM
o -

e Reading:
FIREA A= RE
Examine your code, read it back to yourself, and check that it says what you meant to say.
FiFie 5K, iR, HHFEERSMKRENATZTZRIRBYZEHE—
e Running:
B {TEF :
Experiment by making changes and running different versions. Often if you display the right

thing at the right place in the program, the problem becomes obvious, but sometimes you
have to build scaffolding.

M—LEER, REETEDRAESLERE—T, BEXR), REMRERFSRNLE
ntsmit, M AREELLREAAT, T3 AHEREZFEE - LHFRADRBITHE

Ro
e Ruminating:
RERE :

Take some time to think! What kind of error is it: syntax, runtime, or semantic? What
information can you get from the error messages, or from the output of the program? What
kind of error could cause the problem you’re seeing? What did you change last, before the
problem appeared?

ZlERe B EBE | BTEEZMT o 2 B4R 1 i35, 517, BEELHEE 7Nz
SRLUREFHNMEHEFIMAER ? BB 2 aes RIRFTE IR # 21 7 P H
ZBIBYBR—IRARIL T A+ BT ?

e Rubberducking:
INET TSR IROE

If you explain the problem to someone else, you sometimes find the answer before you
finish asking the question. Often you don’t need the other person; you could just talk to a
rubber duck. And that’s the origin of the well-known strategy called rubber duck debugging. |
am not making this up; see Here.

INRAR=T B H— DN A, (RERIEREEE P TR AR HEIER. EEIRRE
AR A/ =N BR— MR F AL T . XMEREZRBIFTE/NESEXE
R T, HATZEANE ; EXBAEE,

¢ Retreating:
LR 7y i

At some point, the best thing to do is back off, undoing recent changes, until you get back to
a program that works and that you understand. Then you can start rebuilding.

Bz, RENRERMBREER, BUESRENEN, —BERRFRETF, FHEMREE
RRIEM, REBE KRN,

Beginning programmers sometimes get stuck on one of these activities and forget the
others. Each activity comes with its own failure mode.

MFEFIaBRELEZESRPNE—RLFR, RERTHMENS R, LENE
—SEBEZENRRIE R,

For example, reading your code might help if the problem is a typographical error, but not if
the problem is a conceptual misunderstanding. If you don’t understand what your program
does, you can read it 100 times and never see the error, because the error is in your head.

tewn, s RERRERT, MLt N, BENREg 228 LA, X
FRe T, MR IBRIREFHIINEE, MIE iz E—B AR &2, BAZ2MR
JicdaslinpLilb S SN

Running experiments can help, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, you might fall into a pattern | call “random
walk programming”, which is the process of making random changes until the program does
the right thing. Needless to say, random walk programming can take a long time.

https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://en.wikipedia.org/wiki/Rubber_duck_debugging

EAR#IT/ MR G £ EXAHR, #1TXREBEH. BORABEMH 503, R
AL AR TR 4 THEVER#IZ] BfEHH, M iErRE2RIH—LEl, —B8
AREFIFELE. BFER, IMETIEBAEERRAFZH AN,

You have to take time to think. Debugging is like an experimental science. You should have
at least one hypothesis about what the problem is. If there are two or more possibilities, try
to think of a test that would eliminate one of them.

REEMHERE, —EBENAERE., ARXMERE—MWERRME, FED Rzt
BERE—MWR%. MREAMIE ML LN RN, BB iL i+ DR, RKEDEE
PRATREME.

But even the best debugging techniques will fail if there are too many errors, or if the code
you are trying to fix is too big and complicated. Sometimes the best option is to retreat,
simplifying the program until you get to something that works and that you understand.

AM—B4%2% 527, BEFNRXRAETERN, BEFARKELXERETZHE £ U
&5, AUBIRRIFNAEMELLE N #, HiE—TERF, BEEIFT, FEAIRE
HRENERT H L,

Beginning programmers are often reluctant to retreat because they can'’t stand to delete a
line of code (even if it's wrong). If it makes you feel better, copy your program into another
file before you start stripping it down. Then you can copy the pieces back one at a time.

HFREFA2BABRERR, AAxtnAERmE—TR" (FEE2420838) . F

Bz, Efl—TEMNMBE 3 A —DXXGFED &0, REBRA, ZIHETERL
yFeE, REIRAELABEHIE R,

a

Finding a hard bug requires reading, running, ruminating, and sometimes retreating. If you
get stuck on one of these activities, try the others.

BEI—DE) MBBRRTTE, RERE. K. 2, BREEEER. WRIRER
—SRPFRET, RXEMTE

13.11 Glossary K iz%3R

deterministic: Pertaining to a program that does the same thing each time it runs, given the
same inputs.

WEM : A ERENME, BFEERETEREER,

pseudorandom: Pertaining to a sequence of numbers that appears to be random, but is
generated by a deterministic program.

REENER : —EBREFFINHNE, B LEEUFTEMENN, Bxrm EhEHERBENEEE
& ABY,

default value: The value given to an optional parameter if no argument is provided.
RRNE - AR A ST ERYE, 2SRRI ERN &,
override: To replace a default value with an argument.
D A ARSI A TR SBIRE TS, SN SEHMBEER AL,

benchmarking: The process of choosing between data structures by implementing
alternatives and testing them on a sample of the possible inputs.

3t LG 3R,

rubber duck debugging: Debugging by explaining your problem to an inanimate object such
as a rubber duck. Articulating the problem can help you solve it, even if the rubber duck
doesn’t know Python.

INETEIRRIE - A D TREMI A RO E A, tINESZ L8, XHER
Ko HMBREFABREBTHERA, A &ANEYFHFAIRIERE Python BAE &,

13.12 Exercises %4 7]

Exercise 9 4.9

The “rank” of a word is its position in a list of words sorted by frequency: the most common
word has rank 1, the second most common has rank 2, etc.

¥3R8 THERD 2 — DA 5RA, RBHARKRMENLAE : &5 LB L5505k
Z2H—T, BIERBIRBEE T, MKILEH,

Zipf’s law describes a relationship between the ranks and frequencies of words in natural
languages . Specifically, it predicts that the frequency, f, of the word with rank r is:

Zipf ER R T BARAZERHRTIMENKXR. ZEREWMETHR r 59 mf 2 alxR
W

f = cra{-s}

where s and c are parameters that depend on the language and the text. If you take the
logarithm of both sides of this equation, you get:

XEBH s fl c MRS, KFZEMNEME. WRAFX A E I, FRWOT
e

L\)Ziv

http://en.wikipedia.org/wiki/Zipf's_law
http://en.wikipedia.org/wiki/Zipf's_law

Think Python 2e 3 hR

\log f = \log ¢ - s*\log r

(3EFE : ZpfERREEFEGCK FHEXRIREN, AAUKR Y : EEARZEERE
B, —PratnbnESeEmnERENEIEaRKRt.)

So if you plot log f versus log r, you should get a straight line with slope —s and intercept log
C.

FLLANRARYS log f #1 log r # 1T Z 424 RER, MEZBE—FKREL, REIE-s, BHIE
& log c.

Write a program that reads a text from a file, counts word frequencies, and prints one line for
each word, in descending order of frequency, with log f and log r.

BE—1EF, M—IMXHFiEIXAE, %t REED £ —TRaH, &R
@ IRBER, EatiaH—T log f # log 1o

Use the graphing program of your choice to plot the results and check whether they form a
straight line. Can you estimate the value of s?

R—MRERER, BERHTRA, AELE-TEGHN —REL.
At —T s BIElE ?

Solution. To run my solution, you need the plotting module matplotlib. If you installed
Anaconda, you already have matplotlib; otherwise you might have to install it.

BHIRD, Bz iTRIR X MOBEE, REEEHRAEE, matplotlib, MIRIFREET
Anaconda, B2 H matplotib T ; NEMRMATERTERE—T T,

(3#%F3E : matplotlib W& A EHRZ%, LLil pip install matplotlib 5¢3& easy_install -U
matplotlib)

Chapter 13 Case study: data structure selection EHI2 5 : #E L HHI% R 250

http://thinkpython2.com/code/zipf.py
http://thinkpython2.com/code/zipf.py

Chapter 14 Files 314

This chapter introduces the idea of “persistent” programs that keep data in permanent
storage, and shows how to use different kinds of permanent storage, like files and
databases.

FENBHUABRE FANI 2F, MREBEH#TRKATH, FENE T KAGFHN
TEME, IXHGSEEE,

14.1 Persistence A

Most of the programs we have seen so far are transient in the sense that they run for a short
time and produce some output, but when they end, their data disappears. If you run the
program again, it starts with a clean slate.

BRIA EHNAINEFAZSERETHN, eNFERRE2TRL—R, RRFE—E
W, FEITERT, SNNEERBERT. MRMEBREIT—1MER, XEMLFT
BT,

Other programs are persistent: they run for a long time (or all the time); they keep at least
some of their data in permanent storage (a hard drive, for example); and if they shut down
and restart, they pick up where they left off.

ZHAN—ERFRERAN enNafTH ARk (BE—BEFET) ; REERFERE
DRARGE—MOHTE (LCNEERA LFF) RARNREFRXA THEEFHFiR
T, EMZEHEEEPR Sk 5 T,

Examples of persistent programs are operating systems, which run pretty much whenever a
computer is on, and web servers, which run all the time, waiting for requests to come in on
the network.

XMERAMENEFOANFRS, LNEFERE, LITRESRTE, RFERANMEE
17 ; BLEMMiGAR 425, BRE—EFE, FHEEML LBEK,

One of the simplest ways for programs to maintain their data is by reading and writing text
files. We have already seen programs that read text files; in this chapter we will see
programs that write them.

EFREFRERE 2NAERL T EXAXME, ZEIHMNE S Rit — 2B
MEFT ; AERBNEEK LR — FTEHXEANERF.

An alternative is to store the state of the program in a database. In this chapter | will present
a simple database and a module, pickle, that makes it easy to store program data.

F—MAERIEEFIRAFINELARTR. EFAERRBETR—MHE LB FTEE, UKk
— pickle 3, X MEBRRKHET REERFEIENLIRE,

14.2 Reading and writing &5 3 {4
Atext file is a sequence of characters stored on a permanent medium like a hard drive, flash

memory, or CD-ROM. We saw how to open and read a file in Section 9.1.

XAXHMZ—RINFRFE, FHE—DKANRSP, LWIELE. NEHELALZE
B & P8 B,

9. 189 e & T M AL E Bl it AT A A I — XX T
To write a file, you have to open it with mode 'w' as a second parameter:
BEA—IMXH, A ZEITAENHER Iwl FEABZANSE 38T wild

wirte E,‘J%E\/EE I)

open('output.txt', '
open('output.txt', '

>>> fout

w')
>>> fout w')

If the file already exists, opening it in write mode clears out the old data and starts fresh, so
be careful! If the file doesn’t exist, a new one is created.

MRXHE2FET, IHASEANENRITH, REENXHEFRE, RAREHRE
AXE, FU—EE/IND | IRXHEREE, BEFRR BT,

open returns a file object that provides methods for working with the file. The write method

puts data into the file.

open M ZRE— P XA R, XHEGRIIRESMHITERLIEXMHE, write X NTFE
MIBHEREEAZXXGHT,

>>> linel = "This here's the wattle, \n"
>>> linel = "This here's the wattle, \n"
>>> fout.write(linel)

>>> fout.write(linel)

24

The return value is the number of characters that were written. The file object keeps track of
where it is, so if you call write again, it adds the new data to the end of the file.

Think Python 2e F3XhR

ROEEEEAFHNEE, XHARRLHAMAEME, FTNRIRERERBwrite73
E, M BRI T gk LRI RS,

>>> line2 = "the emblem of our land.\n"
>>> line2 = "the emblem of our land.\n"
>>> fout.write(line2)

>>> fout.write(line2)

24

When you are done writing, you should close the file.

Btz E, REER close AiEFXX X,

>>> fout.close()
>>> fout.close()

If you don’t close the file, it gets closed for you when the program ends.

SNRTA close XN, MBFRNEFZTLRBRENRE, BECTRAT.

14.3 Format operator &= iz &

The argument of write has to be a string, so if we want to put other values in a file, we have
to convert them to strings. The easiest way to do that is with str:

write 73 AW 5 FFFERMSE, FIUMRBIEEM 2 BENATAXMY, BMET& %K
FRETT. & EWTEREH str#

x = 52 x = 52 fout.write(str(x)) fout.write(str(x)) An alternative is to use the
format operator, %. When applied to integers, % is the modulus operator. But
when the first operand is a string, % is the format operator.

AR—NHERZARRNzER, EREZEEDS%. ERATEHNRE, BOS%EIR
BNz ER, BB - PzBAREFHENNE, BOS%UAKTRAZERFT,

The first operand is the format string, which contains one or more format sequences, which
specify how the second operand is formatted. The result is a string.

BTz EAREMZHARXNFRH, S —PHEESHRAFT, AETHZ
Nz B REMHEB, RENERAZBIEENFHERT,

For example, the format sequence '%d' means that the second operand should be formatted
as a decimal integer:

B0, '%d'ENMERFINEBRMERE N2 B REER IR A — D+ 2 HI R
o

Chapter 14 Files X4 253

>>> camels = 42
>>> camels = 42
>>> '%d' % camels
>>> '%d' % camels
|42l

The result is the string '42', which is not to be confused with the integer value 42.
&, 2alitlE, SRMEBFRE42'T, MTIEBE2EHME427T.,

A format sequence can appear anywhere in the string, so you can embed a value in a
sentence:

R AEFFI AT URE — DN FRERNEA—MIE, IHEMATUE—azEmiRA—
™ET :

>>> 'T have spotted %d camels.' % camels
>>> 'T have spotted %d camels.' % camels
'T have spotted 42 camels.'

If there is more than one format sequence in the string, the second argument has to be a
tuple. Each format sequence is matched with an element of the tuple, in order.

MRRXEFINE—NULT, WBLBINSERD AR —TITAET . ENEAFTI
FITEEPH—PITR, REFEHER.

The following example uses '%d' to format an integer, '%g' to format a floating-point number,
and '%s' to format a string:

TEBBIFH, BT %dRENbmHERE, RA'%gRBINEZERE, "%sTELFH
FRANT.

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')
>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')
'In 3 years I have spotted 0.1 camels.'

The number of elements in the tuple has to match the number of format sequences in the
string. Also, the types of the elements have to match the format sequences:

MBERN, MRFHEPBACEFINEZD, BIE—EEZNEEHITA R ITHRE
BEFT. AMEREFIETAPITRN L BB —4#

o s«

>>> '%d %d %d' % (1, 2)

>>> '%d %d %d' % (1, 2)

TypeError: not enough arguments for format string
>>> '%d' % 'dollars'

>>> '%d' % 'dollars'

TypeError: %d format: a number is required, not str

In the first example, there aren’t enough elements; in the second, the element is the wrong
type.

B—MPIFH, BETANTREER—D, URET ; B=NEFP, TAEE
TR A B ERTEANAEE, PrltRE T,

For more information on the format operator, see Here. A more powerful alternative is the
string format method, which you can read about at Here.

BENRANZERFHITREATHE, JUREXE, AexBE —MWIEERANENRS
%, EREFEMERILAE format, IS HFXEBERTHRESZ MY,

14.4 Filenames and paths X4 & 5%

Files are organized into directories (also called “folders”). Every running program has a
“current directory”, which is the default directory for most operations. For example, when you
open a file for reading, Python looks for it in the current directory.

X ERBE & (st) RArERN, E—1PaTENREFRHE— 1N Ua1E
%, B RRARELRELE KL H =z EHRENRGAB £, LB RITF— 3043k
B etH®, Python SIMHEIBE FoEEHXNIXHE T,

The os module provides functions for working with files and directories (“0s” stands for
“operating system”). os.getcwd returns the name of the current directory:

IREEHB LB HFIE ZHIZE os 3 (os FLZE operating systemBI#R1E & 4 B9 45
B) .
>>> import os

>>> import os
>>> cwd = os.getcwd()

>>> cwd os.getcwd()
>>> cwd

>>> cwd
'/home/dinsdale’

cwd stands for “current working directory”. The result in this example is/home/dinsdale,
which is the home directory of a user named dinsdale.

cwd KFRB=Z Tcurrent working directoryd (BNHEEITEBR %) B%E. RIR X NMIF
iR [E8Y 45 R Z/home/dinsdale, X Fi2— & F U dinsdale BY ARIN Ak 7 FRTEALE
T

A string like '/home/dinsdale’ that identifies a file or directory is called a path.

{&=2 /home/dinsdale’x # R R — N XHHNE B & HFFF B 7 UHRERE.

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#str.format

A simple filename, like memo.txt is also considered a path, but it is a relative path because it
relates to the current directory. If the current directory is/home/dinsdale, the filename
memo.txt would refer to /home/dinsdale/memao.txt.

— NG 2RSSR, B0 memo.txt B AT DARE R 1R, (BX 2HETEBER, By xR
EEARTXHSUEIT/ER ZMEAIE, WRYF1E & 2/home/dinsdale, B/
memo.txt X L5 HEE 2 /home/dinsdale/memo.txt X NXHEH T,

A path that begins with / does not depend on the current directory; it is called an absolute
path. To find the absolute path to a file, you can use os.path.abspath:

RAERIL/F LHNBRNMRGERIE & 5 XTUMRL TR R. FIE— DX 31 B8
2, " LLH os.path.abspath :

>>> os.path.abspath('memo.txt")
>>> os.path.abspath('memo.txt")
'/home/dinsdale/memo. txt'

os.path provides other functions for working with filenames and paths. For example,
os.path.exists checks whether a file or directory exists:

os.path {24t 7 Hfh—LEp%l, LUK IEBESXHRMERRE. bl os.path.exists &4 & —1
XHHEE ZFREFT

>>> os.path.exists('memo.txt")
>>> os.path.exists('memo.txt")
True

If it exists, os.path.isdir checks whether it's a directory:

INRTFIE, os.path.isdir TLARE E — T HREFRE—TE % -

>>> os.path.isdir('memo.txt")

>>> os.path.isdir('memo.txt")

False

>>> os.path.isdir('/home/dinsdale')
>>> os.path.isdir('/home/dinsdale')
True

Similarly, os.path.isfile checks whether it’s a file. os.listdir returns a list of the files (and other
directories) in the given directory:

B, os.path.isfile FAATLAK & St REFAB—TNXHT .

os.listdir &IREIEE B F NI HE (URR%B %) FIZK,

>>> 0s.listdir(cwd)
>>> os.listdir(cwd)
['music', 'photos', 'memo.txt']

To demonstrate these functions, the following example “walks” through a directory, prints the
names of all the files, and calls itself recursively on all the directories.

4 TRA—TXERENAE, TEXMIFH, waks ITMEBEESL T —TB %, &
EHE TR ZEZ THXHNEF, HEEZBZ THMREFE P2)3RAMABS.

def walk(dirname):
for name in os.listdir(dirname):
path = os.path.join(dirname, name)
if os.path.isfile(path):
print(path)
else:
walk(path)

os.path.join takes a directory and a file name and joins them into a complete path.
os.path.join #E—1B 2 M—PXHEBHSH, AREENHHER—ITERNRE,

The os module provides a function called walk that is similar to this one but more versatile.
As an exercise, read the documentation and use it to print the names of the files in a given
directory and its subdirectories. You can download my solution from Here.

os R F M T — Al walk FIEHE, 5 EEXPMHBREK, ThEEEBRR—L, H—
N JE, — T, REAXD walk ERECRH 4 EE%EPE’\DZ#%U&?EE%E’\J
Z2F, ALUMXET IR,

14.5 Catching exceptions i &2 &

A lot of things can go wrong when you try to read and write files. If you try to open a file that
doesn’t exist, you get an |OError:

EEXHNHIEARZEZH AT, MRFEITFNXEAEE, REEE—1

IOerror :

>>> fin open('bad file')
>>> fin = open('bad_file")
IOError: [Errno 2] No such file or directory: 'bad file'

If you don’t have permission to access a file:

MRARE 2B — D XEEEE R, FEEI— D R4 2 permissionError :

http://thinkpython2.com/code/walk.py
http://thinkpython2.com/code/walk.py

>>> fout = open('/etc/passwd', 'w')
>>> fout = open('/etc/passwd', 'w')
PermissionError: [Errno 13] Permission denied: '/etc/passwd'

And if you try to open a directory for reading, you get

WMRIRIE—NE 4 SMERITH, BRI TEmxFisADirectoryErrorsgi2 7 -

>>> fin = open('/home')
>>> fin = open('/home')
IsADirectoryError: [Errno 21] Is a directory: '/home'

To avoid these errors, you could use functions like os.path.exists and os.path.isfile, but it
would take a lot of time and code to check all the possibilities (if “Errno 21” is any indication,
there are at least 21 things that can go wrong).

{RAT LA & 2os.path.exists. os.path.isfile X ¥ KR L a2, R
BBEERKkE, 2B BERERS (LLUWErmo 21"MRIBEE V21K MM A B RERE
E#2) o

It is better to go ahead and try—and deal with problems if they happen—which is exactly
what the try statement does. The syntax is similar to an if...else statement:

FRLEIF ERIRAIRE, Bty 28, XMz RLBRE B RN, Hiztl
AFLER if...else ZAREARZH :

try:
fin = open('bad _file')
except:

print('Something went wrong.')

Python starts by executing the try clause. If all goes well, it skips the except clause and
proceeds. If an exception occurs, it jumps out of the try clause and runs the except clause.

Python &% # 4T try EEIBEA, MNREITIEE, LBkt except 248, AR Lia
7. IR TRE, BKBH try 28, AEiE1T except 2RI 3,

Handling an exception with a try statement is called catching an exception. In this example,
the except clause prints an error message that is not very helpful. In general, catching an
exception gives you a chance to fix the problem, or try again, or at least end the program
gracefully.

ZFA try 2 ARLERENGE, BURERK. LENGIFH, except zmHEH
HERFEREMHLA. —RIFR, BERELE, MAUAFEREINIENERE
K—TF, HERMUEBRSEBERERFT,

14.6 Databases #{iE =

A database is a file that is organized for storing data. Many databases are organized like a
dictionary in the sense that they map from keys to values. The biggest difference between a
database and a dictionary is that the database is on disk (or other permanent storage), so it

persists after the program ends.

PR E 2 — T RREECSHF#EIENXG., REHEEAMU L UFHNTRKETEN
&, MR a AT RS, BiEAMFHNEAX HIMAETEEERFHERE
(HEHEMAKAEF#E &) , MUEFREZITLRBRHE, 8EEKRAFE,

(FEFE RBFEH TETER, 8 EAOBRAITTRENGL, srmItiiEs
BHxi, BX, HREESFHSFTHRERATR, LB XREEIEEMIEXRBUHKE
&, 2BERHANME —XHANESE, NRELBIRIBEEHTH—F TH, 25
#=—A& 4 : SQLite Python Tutorial,)

The module dbm provides an interface for creating and updating database files. As an
example, I'll create a database that contains captions for image files. Opening a database is

similar to opening other files:

dbm R RM T — D ol EMEHEE 2 XENRERE, TEREXMIFH, HZeBT—
NHEE, ERNARE BRGNS,

TR B S RUERFT FF RO X E R %

>>> import dbm
>>> import dbm
>>> db dbm.open('captions', 'c")
>>> db dbm.open('captions', 'c")

The mode 'c' means that the database should be created if it doesn’t already exist. The
result is a database object that can be used (for most operations) like a dictionary.

BEZD c 2— MR, BERRMRZBEATEAMCIE—THN, FEBORMOL
ME—TEEAEMRT, ARKRRZHNEEHRFHRRER,

When you create a new item, dbm updates the database file.

S —DHTHI AR et R, dbm BAE < BUEE X H#ITEH T,

'Photo of John Cleese.'
'Photo of John Cleese.'

>>> db['cleese.png']
>>> db['cleese.png']

When you access one of the items, dbm reads the file:

I EERNE AR R, dbm REEREWE & X -

>>>db['cleese.png']
>>>db['cleese.png']
b'Photo of John Cleese.'

The result is a bytes object, which is why it begins with b. A bytes object is similar to a string
in many ways. When you get farther into Python, the difference becomes important, but for
now we can ignore it.

FTEMKZREPNLERZE— D ZH#HEINR, IBURUEFLXENDDHWRERRAT., Z#HEIstR
IR FFEERS HEEARIEKN., LUSxt Python WEEATRZE, MR TSR
BET, TIAEXRTEYR, AiARE,

If you make another assignment to an existing key, dbm replaces the old value:

MR —NELFEARMEAITHME, dom MRICIHAYEE BAFTHI A

>>> db['cleese.png']
>>> db['cleese.png']
>>> db['cleese.png']
>>> db['cleese.png']
b'Photo of John Cleese doing a silly walk.'

'"Photo of John Cleese doing a silly walk.'
'"Photo of John Cleese doing a silly walk.'

Some dictionary methods, like keys and items, don’t work with database objects. But
iteration with a for loop works:

FHP—8IE, bl keys # items, BAFBER TR £t RH, BE—1 for fEr ¥
ER 2R LA -

for key in db:
print(key, db[key])

As with other files, you should close the database when you are done:

ARETMBEHMXH—#, AT ZEIRSHA close AR EIEE

>>> db.close()
>>> db.close()

14.7 Pickling Pickle